1. Show the recursion tree for $T(n) = 4T(n/2) + c$ and derive the solution using big-Theta notation. Note: the recurrence is not $T(n) = 4T(n/4) + c$.

2. Show the recursion tree for $T(n) = 4T(n/4) + c$ and derive the solution using big-Theta notation. Explain the intuition why this result is different from the solution of $T(n) = 4T(n/2) + c$.

3. Show the recursion tree for $T(n) = 4T(n/4) + n$ and derive the solution using big-Theta notation. Explain the intuition why this result is different from the solution of $T(n) = 4T(n/4) + c$.

4. Use the master method to give tight asymptotic bounds for the following recurrences.
 (a) $T(n) = 2T(n/4) + 1$
 (b) $T(n) = 2T(n/4) + \sqrt{n}$
 (c) $T(n) = 2T(n/4) + n$
 (d) $T(n) = 2T(n/4) + n^2$

5. Consider the binary search algorithm (see problem 5 from hw1).
 (a) Give the recurrence for binary search. Explain.
 (b) Use the master method to show that the solution to the recurrence is $T(n) = \Theta(\lg n)$.