1. In this problem you'll derive the minimum and maximum numbers of elements in a heap of height h.
(a) What are the minimum number of nodes at level i ? The root is at level 0 , the children of root are at level 1, the grandchildren at level 2, etc. (Note: we're not asking for the total number of nodes - just the number of nodes at a given level of the tree. Also, we assume a level with no nodes does not exist.)
(b) What are the maximum number of nodes at level i ?
(c) Derive (showing your work) the minimum total number of nodes in a tree of height h (meaning the 0 -based index of the last layer in the tree is h) using the summation symbol (\sum).
(d) Using properties in Appendix A of the textbook, give a closed-form solution (no \sum symbol) of the minimum total number of nodes.
(e) Derive the maximum total number of nodes in a tree of height h using the summation symbol (\sum).
(f) Give a closed-form solution of the maximum total number of nodes.
2. Prove that in any subtree of a max-heap, the root of the subtree contains the largest value occurring anywhere in that subtree. Assume a function parent ${ }^{j}(i)$ (recall functional iteration discussed in section 3.2 of the textbook). You will need to show that $\mathrm{A}\left[\right.$ parent $\left.^{j}(i)\right] \geq \mathrm{A}[i]$ forall $j \geq 1$. You'll do this using mathematical induction on j.
3. Where in a max-heap might the smallest element reside, assuming that all elements are distinct?
4. Is an array that is in sorted order a min-heap?
5. Consider the array $\langle 23,17,14,6,13,10,1,5,7,12\rangle$.
(a) Draw the tree associated with this array.
(b) Is this a max-heap? If not, circle the offending piece(s) in your drawing of the tree.
6. Using 1-based indices, show that, with the array representation for storing an n-element heap, the leaves are the nodes indexed by $\lfloor n / 2\rfloor+1,\lfloor n / 2\rfloor+2, \ldots, n$. Hint: one approach is to use the left-child and right-child functions, and show for what values of i the child indices are not valid, i.e. greater than n.
7. Using figure 6.2 as a model (which uses 1-based indices), illustrate the operation of max-heapify (A, 3) on the array $A=\langle 27,17,3,16,13,10,1,5,7,12,4,8,9,0\rangle$.
8. Using figure 6.3 as a model, illustrate the operation of build-max-heap on the array $A=\langle 5,3,17,10,84,19,16,22,9\rangle$.
