1. For a stack, if we push 1, 2, 3, 4, 5 and then pop five times, give the order of the elements popped off the stack.

2. For a queue, if we enqueue 1, 2, 3, 4, 5 and then dequeue five times, give the order of the elements dequeued from the queue.

3. Using figure 10.1 as a model, illustrate the result of each operation in the sequence push(4), push(1), push(3), pop(), push(8), pop() on an initially empty stack stored in an array S[1..6].

4. Using figure 10.2 as a model, illustrate the result of each operation in the sequence enqueue(4), enqueue(1), enqueue(3), dequeue(), enqueue(8), dequeue() on an initially empty queue stored in an array Q[1..6].

5. Describe how to implement a queue using two stacks. Analyze the running time of the queue operations.

6. Recall that a set has no duplicate elements. Suppose we use a linked list to store a set. The operation union takes two sets and combines them into a single set.

 (a) Describe the running time of union if we know the two sets are disjoint (they don’t share any elements).
 (b) Describe the running time of union if we don’t know that the two sets are disjoint.

7. In a doubly-linked list, each node has a pointer to both the next node and the previous node (see figure 10.3 in the textbook). For each of the four types of lists in the following table, what is the asymptotic worst-case running time for each operation listed? L is the list, k is a key, and x is a node. Successor(L,x) finds the next ordered node and Predecessor(L,x) finds the previous ordered node.

<table>
<thead>
<tr>
<th>Search(L,k)</th>
<th>Insert(L,x)</th>
<th>Delete(L,x)</th>
<th>Successor(L,x)</th>
<th>Predecessor(L,x)</th>
<th>Minimum(L)</th>
<th>Maximum(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted, singly linked</td>
<td>sorted, singly linked</td>
<td>unsorted, doubly linked</td>
<td>sorted, doubly linked</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. In a direct-address table or hash table, “satellite data” is extra data that is stored along with the key. For example, in the video, “Joe” and “Jill” would be satellite data, where 385 and 741 would be the keys. A bit vector is an array of bits (0s and 1s). A bit vector of length m takes much less space than an array of m pointers. Describe how to use a bit vector to represent a dynamic set of distinct elements with no satellite data. Dictionary operations Insert, Delete, and Search should run in O(1) time.

9. Show the resulting chained hash table after inserting the keys 5, 28, 19, 15, 20, 33, 12, 17, 10. Let the table have 9 slots and let the hash function be $h(k) = k \mod 9$. Elements in each chain can be given in any order.

10. Professor Edwards hypothesizes that he can obtain substantial performance gains by modifying the chaining scheme to keep each list in sorted order. How does the professor’s modification affect the running time for successful searches, unsuccessful searches, insertions, and deletions?

11. Suppose we wish to search a linked list of length n, where each element contains a key k along with a hash value $h(k)$. Each key is a very long character string. How might we take advantage of the hash values when searching the list for an element with a given key?
12. Consider a hash table of size $m = 1000$ and a corresponding hash function $h(k) = \lfloor m(kA \mod 1) \rfloor$ for $A = (\sqrt{5} - 1)/2$. Compute the locations to which the keys 61, 62, 63, 64, and 65 are mapped.

13. Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 59 into a hash table of length $m = 11$ using open addressing with the auxiliary hash function $h'(k) = k$. Show the hash table after inserting the keys using:

 (a) linear probing.
 (b) quadratic probing with $c_1 = 1$ and $c_2 = 3$.
 (c) double hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k \mod (m - 1))$.

Show also the number of collisions for each key and the total number of collisions. For example, a portion of the answer for part (a) is the following:

```
0 1 2 3 4 5 6 7 8 9 10 index
15 59 10
1 4 0
6 total collisions
```