1. Given the keys $1,4,5$, draw a binary search tree with...
(a) 1 at the root.
(b) 4 at the root.
(c) 5 at the root.

There may be multiple trees possible. You need only give one.
2. Given the keys $1,3,4,5,9,10,16$, show all possible binary search trees...
(a) with 5 at the root and with a tree height of 2 (meaning 2 edges from the root to the furthest leaf).
(b) with 4 at the root, 1 and 16 as leaves, and with a tree height of 3 .
(c) with 1 at the root, 3 and 16 as leaves, and with a tree height of 5 .
3. Consider the binary-search-tree property and the min-heap property.
(a) What is the difference between the two?
(b) Can the min-heap property be used to print out the keys of an n-node tree in sorted order in $O(n)$ time? Show how, or explain why not.
4. Give a nonrecursive algorithm that performs an inorder tree walk, printing the keys in order. Assume you have a stack to work with.
5. Suppose that we have numbers between 1 and 1000 in a binary search tree and we want to search for the number 363. Indicate whether each of the following sequences could or could not be the sequence of nodes examined. Hint: draw out the path and see if the path obeys the binary tree property.
(a) $2,252,401,398,330,344,397,363$
(b) $924,220,911,244,898,258,362,363$
(c) $925,202,911,240,912,245,363$
(d) $2,399,387,219,266,382,381,278,363$
(e) $935,278,347,621,299,392,358,363$
6. Consider the complete binary search tree of height 3 on the keys $1,2, \ldots, 15$. In your drawings, don't worry about the NIL nodes.
(a) Draw the tree and assign each row a red or black color such that the tree has a black-height of 4. Indicate if this is not possible and why.
(b) Draw the tree and assign each row a red or black color such that the tree has a black-height of 2 . Indicate if this is not possible and why.
(c) Draw the tree and assign each row a red or black color such that the tree has a black-height of 1. Indicate if this is not possible and why.
7. Consider the tree in figure 13.1. Suppose you add a node n with key 36 .
(a) Who is the n 's parent?
(b) If n is red, is the resulting tree a red-black tree? If not, which property is violated?
(c) If n is black, is the resulting tree a red-black tree? If not, which property is violated?
8. Suppose that we "absorb" every red node in a red-black tree into its black parent, so that the children of the red node become children of the black parent. How many children might a parent now have? Assume every internal node of the original tree has two children. The resulting tree after the absorb may not be a binary tree.
9. Show that the right rotate operation of a red-black tree retains binary search tree properties. You do not need to refer to the algorithm, just to figure 13.2 on page 313 . You will show this using inequalities between x, y, α, β, and γ.
10. Argue that in every n-node binary search tree, there are exactly $n-1$ possible rotations.

