
Some Empirical Criteria for Attributing Creativity
to a Computer Program

Graeme Ritchie

Received: 28 March 2006 / Accepted: 9 May 2007 / Published online: 5 June 2007

� Springer Science+Business Media B.V. 2007

Abstract Over recent decades there has been a growing interest in the question of

whether computer programs are capable of genuinely creative activity. Although

this notion can be explored as a purely philosophical debate, an alternative per-

spective is to consider what aspects of the behaviour of a program might be noted or

measured in order to arrive at an empirically supported judgement that creativity has

occurred. We sketch out, in general abstract terms, what goes on when a potentially

creative program is constructed and run, and list some of the relationships (for

example, between input and output) which might contribute to a decision about

creativity. Specifically, we list a number of criteria which might indicate interesting

properties of a program’s behaviour, from the perspective of possible creativity. We

go on to review some ways in which these criteria have been applied to actual

implementations, and some possible improvements to this way of assessing crea-

tivity.

Keywords AI methodology � Computational creativity � Empirical criteria �
Generating artefacts � Assessing output

Introduction

Since the early days of artificial intelligence, there has been a dispute about the

fundamental limitations of computer programs in the general area of imitating

human activities (Dreyfus 1979; Weizenbaum 1976). Boden (1992) attributes some

of the central questions in this debate to the 19th century pioneer Ada Lovelace. One

aspect of computer behaviour which is particularly contentious is that of creativity,

summarised by the general philosophical question: ‘‘can computers be truly

creative?’’. Recent decades have seen a growth in attempts to build computer

G. Ritchie (&)

Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK

e-mail: gritchie@csd.abdn.ac.uk

123

Minds & Machines (2007) 17:67–99

DOI 10.1007/s11023-007-9066-2

programs which tackle tasks which, when performed by humans, are deemed

creative: representational paintings (Boden 1992, pp. 135–153), music (Baggi 1992;

Miranda 2001), mathematical concepts (Lenat 1979; Colton 2002), stories (Meehan

1976; Turner 1994), jokes (Binsted and Ritchie 1997; Stock and Strapparava 2005),

or poems (Gervás 2000, 2001, 2002; Manurung et al. 2000a, b). As well as all this

concrete work in specific domains of creativity, there has also been a stream of work

which tries to pin down the formal properties of (computational) creative processes

in a domain-independent manner (Wiggins 2001, 2003, 2005, 2006a, b; Pease et al.

2001). Within that, a recurring theme is the question ‘‘which computational

mechanisms are most suited to producing creative behaviour?’’. This strand has

been heavily influenced by the much-debated ideas of Boden (1992, 1998) on the

nature of creativity.

The proposals here fall, to some extent, between these two streams (specific

implementations and general analyses), and may even be seen as trying to bridge

between them. Our objective is to set out a way in which very general questions

such as the philosophical ‘‘can computers be truly creative?’’, and the more

practical ‘‘which computational mechanisms are most suited to producing creative

behaviour?’’, can be connected to empirical evidence from actual working systems.

The reasoning is that such general questions can be answered only if we have a way

of answering the more specific question ‘‘has this program behaved creatively on

this occasion?’’ (or perhaps ‘‘to what extent has this program behaved creatively on

this occasion?’’). Without a way to answer this question, the more general questions

can never be tested empirically. We take it as a general axiom of scientific

methodology that claims should be subject to empirical refutation or corroboration.

It may be helpful to point out some issues which will not be tackled here. Firstly,

we are not attempting to characterise the nature of the creative process, nor to build

a model of creativity (unlike Wiggins (2001, 2006a, b), for example). This means

that many of the suggestions raised by Boden (1992), and debated subsequently,

about different types of creativity (combinational, exploratory, transformational) are

not under consideration here. Also, the present paper is not itself empirical, but

methodological: we are considering where one might look for evidence, rather than

offering actual evidence of creativity for any particular programs. We will not be

attempting to support or refute the proposition that computers can be creative, but

will be considering how it would be possible to substantiate or refute such

hypotheses empirically. However, this does not mean that we will be discussing

such experimental matters as testing procedure, construction of suitable controls,

use of appropriate statistics, etc. Although these are important issues, a logically

prior debate is the decision about what factors are to be observed, and how these
might relate to creativity. Once we have some idea of what to measure, then

standard experimental practices can be adopted.

We shall start by setting down our basic methodological assumptions. Then we

shall present our main proposals, starting with an abstract characterisation of the

situation in which a potentially creative program is built and run, and proceeding to

argue for various possible factors which might be relevant to a judgement about the

creativity of the program. These factors will be formally stated as criteria which can

be applied precisely, providing that the relevant information about the program is

68 G. Ritchie

123

available. After listing these criteria, we shall look briefly at some related work

which has developed since the criteria first appeared (Ritchie 2001), and then review

some small studies where the criteria were applied to actual systems. After

reflecting on the lessons of these studies, and we speculate on possible extensions to

the framework.

Assumptions

What Kinds of Activity are Creative?

The use of the term ‘creative’ originated within human society, and our whole

notion of ‘creative’ tends to manifest various social and cultural prejudices which

have to be taken into consideration when considering computer behaviour. In this

author’s culture at least, certain activities are assumed to be more creative than

others. Painting a picture, writing a poem, or creating a sculpture are often deemed

creative, even when performed in a relatively ordinary manner. Mathematics,

science, or engineering are rarely classed as creative, unless they are done

exceptionally well. This bias does not seem helpful in a rigorous attempt to pin

down the notion of creativity, particularly when applied to machines. Although

there is still a tendency within AI to tacitly accept this intellectual apartheid of

creative versus non-creative activities, it would be better if we could be more neutral

in our formal characterisation of creative actions. In the rest of this paper, the

illustrative domains mentioned will typically be areas such as poetry-writing or

story-telling, but this does not mean that the formal definitions or substantive

proposals relate only to those activities. We will abstract away from the particular

genre of activity, and discuss only the formal properties of the production of

artefacts. (See later in this section for a more detailed sketch of the type of programs

considered.)

The Basis in Human Creativity

A central assumption here is that any formal definition of creativity must be based

on its ordinary usage; that is, it must be natural and it must be based on human
behaviour. (This is probably tacitly assumed by most research in this area, but is

worth making explicit, to give later discussion a firmer foundation.) By ‘‘natural’’,

we mean that any technical definition of ‘creative’ (or ‘creativity’) which is to be

used in discussing the behaviour of computer programs must capture fairly

accurately the original ordinary language use of the term. This is the only way to

ensure that we are at least broadly considering creativity, and not some other

concept, and that any claims or findings can be expressed in a meaningful way.

Despite the fact that ordinary language is often imprecise or ambiguous and

scientific usage should be exact, our precise formal definition should be a close

approximation of the original loose term.

Similarly, the ‘‘basis in human behaviour’’ means that we should be guided by

the way that the word ‘‘creative’’ is ordinarily used when talking of non-machine

Criteria for Computational Creativity 69

123

(human) creativity, for two reasons. Firstly, this provides us with some guidelines in

firming up what we mean by creativity. Secondly, to rely on instances of machine

creativity (the problem we wish to analyse) would risk circularity in claims about

the nature of that process.

This orientation explains the allusions, in later sections, to instances of human

creativity (as is commonplace in articles in this area).

Sources of Evidence

We should, in our pursuit of evidence that a program has behaved creatively,

consider only empirically observable factors. In human creative activities, there are

certain aspects which are knowable, such as the attributes of the artefact created, the

other comparable artefacts in existence, possibly the other artefacts the creating

individual was aware of. What we usually do not know is the mental or emotional

processes by which the individual produced the artefact (although we may know

other aspects of the action, such as the time taken). Hence, it is routine to make

judgements of creativity (in humans) on the basis of what is known, often focussing

on the attributes of the artefact(s). If our formal definition of achieving creativity,

for analysis of computer systems, is to mimic our judgements of humans, then it too

should be based only on comparably observable factors, without adding extra

information about the internal workings of the computer program. This may be our

most contentious working assumption, as some would argue that the inner workings

of a computer program are critical in deciding its creativity; in particular, (Boden

1992, pp. 39–40) advocates just such consideration of the underlying process (for

both humans and computers). We suggest that this would move away from the way

human creativity is normally judged. (It also risks circularity when asking the

question ‘‘which computational mechanisms give rise to creativity?’’—see below.)

There is a fine but important distinction between the production of the artefact,

and the devising of the production-method; if we happen to know the method, we

can treat it as an abstract artefact and consider the creativity it manifests, relative to

other production-methods. This holds true for both computer and human creativity,

to some extent, and starts to address the intuition that human artefacts might be

assessed in terms of how much technical skill went into their production, as

sometimes happens in critiques of ‘conceptual’ art. For example, suppose a human

artist devises a highly original way of producing some physical artefact, such as a

multi-media installation or a sculpture, and then employs skilled technicians to

implement this method. The artist’s contribution is the invention of the method (an

abstract artefact), and we can assess this achievement (for its creativity, etc.). The

characteristics of the final concrete result may be more attributable to the

implementers.

The more finely one wishes to model judgements of creativity, the more complex

matters become. For the purposes of setting up an initial framework, we shall adopt

the (possibly over-simplified) assumption that the internal workings of a program

are not part of the relevant data.

All this is directed at ensuring that our definition is genuinely empirical, and

stated in terms of factors which are (at least in principle) observable. Moreover, our

70 G. Ritchie

123

definition(s) should describe what behaviour we would regard as creative without

building in, prematurely, proposals about how that behaviour might be achieved. If

we can maintain a separation between our observational vocabulary and our

theoretical models of possible mechanisms, then we can, without circularity, treat

questions such as ‘‘which computational mechanisms lead to creativity?’’ as

empirical issues. If we incorporate our hunches about the best way to achieve

creativity into our definitions of what observable behaviour constitutes creativity,

then we have, to a large extent, undermined the empirical nature of the

investigation.

Colton (personal communication) has suggested that if a program run produces a

set of output items which is highly-rated (by whatever measures are appropriate—

see later in this section) in a relatively simple manner, it should be regarded as more

creative than a comparable program run which is more laborious in producing the

same results. It is unclear what importance could be attached to such information. Is

it only to be used as a ‘tie-breaker’ when two different programs produce equally

good results? If not, how is it to be weighed up against the ratings of the created

artefacts? It is argued in Ritchie (2006, Section 7.5) that if we define a particular

program behaviour (being ‘transformational’) as constituting creativity, then there is

a potential dilemma if there is a mismatch between the implications of a program’s

internal and external behaviours: what if a program’s transformational status

supplies evidence contrary to that from the relevant attributes of its output? A

similar issue has to be considered here: even if we formalise some notion of the way

in which a computation has been achieved, how should we use that information,

without pre-judging the issue of what computations are most effective in achieving

creativity?

What Kind of Program?

We will be putting forward an analysis of what goes on when a program carries out

potentially ‘creative’ activity. The raises the questions: what types of program are

we considering, and can we define this class of program without first defining

‘‘creative’’, which might run the risk of circularity?

The broad class of program under consideration operates in the following

situation:

• There is some (usually culturally-defined) class of artefacts which the program is

to generate. This class of artefacts exists prior to the program being constructed,

and is not defined in terms of the workings of the program.

• The class is, in principle, extremely large, possibly infinite.

• Given an item (human or computer generated), there may not be a precise

definition of whether it is in that class. That is, membership of the class is ill-

defined in some way, being either fuzzy, or subjective, or not subject to

algorithmic assessment. Moreover, humans are able to judge (possibly with

disagreements) the extent to which an artefact belongs to a particular class.

• Given an item, humans can rate the (usually subjective) ‘quality’ of the item.

Criteria for Computational Creativity 71

123

These attributes are intended to capture what it is that computer-generated

poems, artistic pictures, stories, etc. have in common, and to distinguish them from

more orderly constructs such as solutions to equations, the results of numerical

calculations, the output of a compiler, or the documents found by an information

retrieval system. It is noticeable that the devising of mathematical concepts or

conjectures is, historically, regarded within AI as being (potentially) creative (Lenat

1976; Colton 2002), even though such objects are more well-defined than poems or

paintings. (Colton (personal communication) has pointed out that the HR program

(Steel et al. 2000; Colton et al. 2000) produces only well-formed items of the target

class, namely mathematical conjectures.) However, in all other respects they

conform to the sketch given above. This means that one could choose to apply our

framework to mathematical discovery programs, but would find that some parts of it

gave trivial or uninteresting results. (See also Ritchie (2006, Section 4.2) for further

discussion.)

Given the essential reliance on human judgement to assess the output of a

program, we should make explicit that we have in mind an arrangement whereby a

computer program produces items of some sort, and these are appraised (in some

suitably controlled way) by human judges. This puts the computer program on the

same level, and makes it subject to similar standards, as human creators.

P-Creativity and H-Creativity

Boden (1992) makes the important distinction between H-creativity (producing an

idea/artefact which is wholly novel within the culture, not just new to its creator)

and P-creativity (producing an idea/artefact which is original as far as the creator is

concerned, even though it might have been proposed or generated elsewhere in the

culture, perhaps much earlier in history). This is a very useful distinction, because it

clarifies what evidence is or is not relevant. Boden points out that when studying the

process of being creative (within a single human or in a computer program) it is P-
creativity that is at issue, since we are interested in how a single agent can come up

with something that is novel relative to its initial state of knowledge. A P-creative

discovery may prove to be of little use to society because it repeats something that

was already known, but that does not render the intellectual or artistic feat of

producing the idea/artefact uncreative, viewed in isolation. The mechanisms of

creation are what we are interested in here; that is, we shall largely ignore the H

(historical) variant, and consider only the P (personal) notion of creativity.

Essential Properties

In discussions of creativity, there seems to be widespread support for the idea that

two important, perhaps essential, criteria for deciding whether creativity has

occurred are:

Novelty To what extent is the produced item dissimilar to existing examples of its
genre?

72 G. Ritchie

123

Quality To what extent is the produced item a high quality example of its genre?

As noted earlier, discussions of creativity have to be rooted in human creativity,

where assessments of the novelty or quality of an artefact are assumed to be applied

only to genuine examples of the artefact class (stories, melodies, poems, pictures,

etc.). That is, philosophical discussions of creativity (typified by Boden) usually do

not consider the prior test:

Typicality To what extent is the produced item an example of the artefact class in
question?

Since computer creativity is at a relatively basic stage, this more prosaic question

has to be asked of items before appreciation of novelty and quality arise. (Novelty

and typicality may well be related, since high novelty may raise questions about, or

suggest a low value for, typicality; we shall return to this matter later.) For example,

poetry generators are currently incapable of reliably producing texts which would

consistently be rated as poems by human judges, and joke generators are similarly

variable in quality. It therefore makes sense to consider the most fundamental goal

of a potentially creative program: is it even doing the job it is supposed to do, by

producing artefacts which are of the required sort?

In our formulation below, we have chosen to make typicality and quality

primitive elements, describing the (very important) concept of novelty in terms of

other constructs, including typicality. The intention is that both typicality and

quality will usually be assessed by human judgement and may therefore be partly or

wholly subjective.

Judgements by humans will be based on their whole cultural experience and

knowledge, and hence are likely to reflect historical comparisons of the artefacts. It

might seem that this means human verdicts can assess only H-creativity, not

P-creativity. However, if we avoid using human judgements about concepts such as

‘originality’, ‘novelty’ or ‘creativity’, and instead try to confine these verdicts to

more basic notions such as typicality and quality, we may be able to keep the focus

on P-creativity. Novelty will be taken into account elsewhere in our framework, not

treated as a primitive judgement.

In passing, one could consider that the difference between P-creativity and

H-creativity (‘P-creativity and H-creativity’ above) is primarily definable in terms

of novelty—an achievement which is P-creative but not H-creative may meet

similar standards of quality, but not be greatly novel when judged in a wider

context. More specifically, the difference lies in the source or basis of the novelty

judgement: the individual, or a whole culture through history. In a sense, there are

analogous notions of P-novel and H-novel, which play corresponding roles in

defining P-creative and H-creative. We shall refer back to this when discussing

Koza et al.’s proposals.

Criteria for Computational Creativity 73

123

The Framework

In the next section, we shall set out our central idea: a set of criteria which can be

applied to a situation where a (potentially creative) program has created some

output data (artefacts), and which give some indicators of the extent to which that

program has been creative on that occasion. Before we can state the criteria

precisely, we need to outline, at a suitable level of abstraction, exactly the type of

situation to which our criteria apply. That is, we need a formal statement of the

entities and relations that are involved when a program ‘creates’, so we can set up

conditions whose fulfilment might count as evidence of creativity. That formal

statement is the topic of this section.

Basic Items

A creating program operates to produce artefacts in some medium. The ‘medium’ is

essentially the output data type of the program. At the level of abstraction adopted

here, we can ignore (at least provisionally—see ‘Possible Extensions’ below) the

internal structure of the entities that the program produces, and simply postulate a

set, possibly infinite, of basic items. This is not a definition of what would count as a

‘successful’ or ‘valid’ output for the program, merely a statement of the data type

which it produces (e.g. strings of words, arrays of pixels). For example, the basic

item set for a program intended to produce simple verbal jokes might be the set of

finite sequences of words and punctuation symbols.

Rating the Output

We want any assessment of items produced by a program to be as faithful as

possible to the two notions of novelty and quality stated in the previous section,

taking into account the remarks we made about typicality.

We shall take basic items as being possible instances of the intended class of

artefacts. More subtly, they may be instances to some degree. We will therefore

represent a class of artefacts (the target of the creative exercise) as a mapping from

the basic items to the interval [0,1]. (This is equivalent to treating the class as a

fuzzy set, but that perspective will not be developed here.) That is, the extent to

which an output basic item is a poem/story/picture/joke/melody/etc. will be

expressed as this numeric score. This is the notion of typicality introduced in the

previous section, and takes one step towards allowing us to capture the novelty

criterion. We will decompose the intuitive idea of novelty into two separate factors.

Firstly, items which gain low scores on the typicality mapping will be deemed to be

dissimilar to the norm for that class. That is, we assume that this mapping encodes

the notion of established norms for the artefact class, so that high-scoring items are

very much part of the class, and low-scoring ones are implicitly dissimilar from the

past practice (in society or culture) which has established the class. This gives an

abstract notion of novelty with respect to the genre. Secondly, in the next section,

we shall try to formalise the notion of a program producing items which are

different from those which guided its original construction. This is a more local,

74 G. Ritchie

123

specific form of novelty with respect to a subset of already known artefacts. In this

way, we do not treat novelty as a single primitive attribute, but decompose it

(slightly) into other factors, which could be loosely glossed as untypicality and

innovation.

As noted earlier, a useful distinction can be made between properties which

measure to what extent an item meets the criteria for membership in the intended

artefact class (is it a poem/joke/conjecture/etc.?) and further properties whose

presence indicate that the artefact is a good instance of this type of artefact (a good

poem, a funny joke, an elegant or profound conjecture, etc.). This latter evaluation

will also be formalised as a mapping from basic items to [0,1]. This attempts to

capture the second informal property, quality, introduced earlier.

Both typicality and quality would normally be determined by human assessment

of basic items (potential artefacts). For example, the output of the JAPE joke-

generator was evaluated by human judges against two standards: ‘‘is this item a

joke?’’ and ‘‘how funny is this item?’’ (Binsted et al. 1997). These correspond

directly to the typicality rating and the value rating of our framework, so (given the

complete raw data from that evaluation) these criteria could be evaluated.

These two mappings—for class membership and quality—may themselves be

based on further definitions (e.g. a checklist of properties, perhaps with weightings

attached). At present, we have no firm proposals on what this information should be,

but we shall call it a rating scheme, and list it separately so that the distinction can

be made in our later definitions, abstracting away from its internal details. We shall

also assume an operation APPLY which, given a rating scheme, creates a mapping to

[0,1]. Notationally, we shall usually make the abbreviation of using the name of a

rating scheme as if it were the function which APPLY would create; that is, writing

ratðXÞ as short for APPLYðratÞðXÞ . The set of possible rating schemes for a set A
will be written as ‘‘RAT ðAÞ ’’.

The Objects Generated

We can now use a rating scheme as representing a class of basic items.

Definition 1 An artefact class consists of a set B and a rating scheme for B

Here we are using a single rating scheme to capture both inherent, measurable

properties of a basic item, such as syllable counts, and more subjective aspects. In

particular, discussions of creativity sometimes argue that the expectations of the

audience are relevant—an artefact which exceeds or violates the expectations of the

perceiver may be rated more highly. Here, those aspects are packed into the notion

of an artefact class, on the grounds that expectations are in a sense a subjective

notion of what typifies a particular genre. This should suffice at least as a first

approximation.

As noted above, we also need a rating scheme to represent the quality of the

generated artefact.

Criteria for Computational Creativity 75

123

Definition 2 A value-based artefact class consists of a triple (B; typ; val), where B
is a set (the basic items) and typ; val 2 RAT ðBÞ (the typicality ratings and the

value ratings respectively).

Inspiring Set, Program and Results

The origins of a generating program are pertinent to assessing its creativity, as is

often acknowledged by worries about ‘results being pre-programmed in’. However,

it is beyond the scope of this paper to formalise this part of the process. For the

moment, we shall adopt a very simplified framework, as follows. The construction

of the program is influenced (either explicitly or implicitly) by some subset of the

available basic items. This subset, which we will call the inspiring set, could be all

the relevant artefacts known to the program designer, or items which the program is

designed to replicate, or a knowledge base of known examples which drives the

computation within the program.

The motivation for including the inspiring set (notated I) in our formal account is

that creativity could be viewed as depending on the extent to which the program

does or does not replicate (or closely imitate) the instances which guided its design.

Where I consists of a wide variety of examples with which the program designer

was acquainted, it may be very difficult to define its exact extent, so that some of our

formal proposals involving this set will be hard to apply in practice. However, some

of the studies we shall discuss later show how I may be a concrete set of instances

which drive the creating program’s computations.

It has been suggested (by a reviewer of this paper) that it is also necessary to

consider the case where there is no inspiring set. This is different from the analyst

not knowing what inspiring set had been involved, or the results being completely

different from the inspiring set; this condition involves there being no such items at

all (I = ;). For there to be no inspiring set, a program (of the general sort outlined in

‘Assumptions’) would have to come into being without the designer being guided

by any exemplars of the artefacts to be created, and with no (semi-)automated

process (e.g. machine learning, case-based reasoning) which was based on

exemplars. Perhaps this could be the case where a program was designed to create

what we have called ‘‘basic items’’, possibly randomly, with no previous choice of

artefact class. In such a situation, it is conceivable that a program creating random

strings of words and punctuation might happen to produce a poem or a story. This is

not typical of the situations focussed on here; however, our formalisation does allow

for an empty inspiring set as a special case.

As noted above, we will not offer a dissection of how a (potentially creative)

program comes into being. For example, the relationship of the inspiring set to the

program is of interest. The program design/construction could be human-crafted or

automated; parts of the process could even be random. There is also the question of

input parameters used for different runs of a program. The creativity of the program

could in principle be assessed according to these aspects. As our proposals

constitute an initial framework, we have confined our attention to a narrower range

of phenomena, and have not attempted to describe these possibilities within our

76 G. Ritchie

123

criteria (but see ‘Possible Extensions’, later). For our purposes, a program produces

a set of basic items, R.

Evidence for Creativity

Preliminaries

The various formal constructs set out above allow us to state some criteria which

could be applied in deciding how successful a potentially creative program is, or has

been, in a particular run. We do not consider the idea that the creativity of a program

can be considering independently of the sets of results that it produces, i.e. the

outputs from its runs. We do not claim that all these criteria are essential to an

assessment of creativity, nor that they are the only such criteria that could be

considered; rather, they are a first draft of a general catalogue of relevant factors

(see ‘Discussion’, later).

These criteria tackle the question of appraising the output of a generating

program in isolation, without knowledge of the program’s construction or internal

workings. This is comparable to the assessment which people routinely make of

human-created artefacts (see ‘Assumptions’ above).

In the formal criteria listed below, we assume a value-based artefact class

(B; typ; val), an inspiring set I (a subset of B), and a program which has produced a

set of results R (also a subset of B). That is, our criteria apply to the results of a

particular run of the program, or of a set of runs where the results have been

aggregated without maintaining links to the runs which created them.

It should be possible to generalise these ideas to cover a sequence of ‘‘runs’’

where a sequence of separate result sets is produced, so as to assess the creativity of

a program in general rather than a single run of that program. That elaboration is not

explored here (but see ‘Possible Extensions’ below).

The criteria involve the ratings typ and val, the result set (R) and the inspiring set

(I), combined and compared in various ways.

For convenience, we employ the following notation:

Ta;bðXÞdef¼fx 2 Xja � typðxÞ � bg: The subset of X falling in a given range of

typicality.

Va;bðXÞdef¼fx 2 Xja � valðxÞ � bg: The subset of X falling in a given range of

quality.

AVðF;XÞdef¼
P

x2X
FðxÞ

ðXÞ : The average value of a function F across finite set X.

ratioðX; YÞdef¼ ðXÞðYÞ: The relative sizes of two finite sets X,Y, where Y 6¼ ;.

The Criteria

As noted earlier when we introduced the notion of typicality, the first goal which a

potentially creative computer program must meet, before aspiring to novelty or

quality, is to produce items which are judged as being instances of the intended

class. This factor is represented here by the typ scores of result items, so one way to

Criteria for Computational Creativity 77

123

capture the success of the program on this rudimentary goal would be to look at the

average value of this score across the result set (notation as defined above):

Criterion 1 AV(typ, R) > h, for suitable h.

Here, h is some threshold to be chosen in the particular situation, indicating the

score at which items are deemed to have reached acceptable typicality. It is not

obvious or trivial to define such a threshold. We shall return to this matter in

‘Discussion’ below.

Still focussing on this elementary notion of success, another possible condition to

examine is whether a significant proportion of the result set are indeed examples of

the intended genre, by scoring well on typicality:

Criterion 2 ratio ðTa;1ðRÞ;RÞ[h, for suitable a, h.

In this criterion, there are two parameters to be chosen, a and h. The expression

Ta,1(R) can be thought of as ‘created artefacts which conform to the established

definition of, or norms for, the class’.

These two criteria can be seen as conflicting with the novelty requirement, but, as

discussed in ‘Assumptions’, merely succeeding in conforming to the norms of the

chosen genre is an achievement for a computer program. It is therefore worthwhile

including some tests for this level of success. Branching out into producing

untypical items—as suggested by novelty—is a more advanced level of creativity,

which we will attempt to capture in further criteria, below.

When we widen the scope of the assessment to consider quality (i.e. are the

generated artefacts rated as being good, in some sense?), then there are two

analogous criteria to the above typicality conditions—average quality being above

some threshold, and a large proportion of the results being above some quality

threshold, with Vc,1(R) meaning ‘the high-quality artefacts’:

Criterion 3 AVðval;RÞ[h, for suitable h.

Criterion 4 ratioðVc;1ðRÞ;RÞ[h, for suitable c, h.

A more subtle criterion would be to confine attention to those items which met

some typicality threshold (i.e. were genuine instances of the artefact class) and then

ask what proportion of these also scored well in terms of quality:

Criterion 5 ratio ðVc;1ðRÞ \ Ta;1ðRÞ; Ta;1ðRÞÞ[h, for suitable a, c, h.

As Boden (1992) makes clear, a higher rating of creativity should be accorded to

the production of artefacts which do not conform closely to the norms of the genre

(typicality), but which nevertheless are rated highly when judged on their merits

(quality). We can model this judgement in various ways, depending on what we

choose to compare the set of untypical high-valued items (Vc;1ðRÞ \ T0;bðRÞ) with.

One possibility would be to compare with the entire set of outputs (R):

Criterion 6 ratio ðVc;1ðRÞ \ T0;bðRÞ;RÞ[h, for suitable b, c, h.

78 G. Ritchie

123

This criterion asks whether a large proportion of the program’s output falls into

the (supposedly desirable) category of untypical but high-valued. Alternatively, we

could compare with the set of all untypical items (T0;bðRÞ):

Criterion 7 ratio ðVc;1ðRÞ \ T0;bðRÞ; T0;bðRÞÞ[h, for suitable b, c, h.

That is, what proportion of the untypical items are of good quality? If there are no

untypical items, (i.e. T0;bðRÞ ¼ ; for whatever value of b is deemed appropriate),

then this criterion could not be used. A comparison could also be made with the set

of typical high-valued items (Vc;1ðRÞ \ Ta;1ðRÞ):

Criterion 8 ratio ðVc;1ðRÞ \ T0;bðRÞ;Vc;1ðRÞ \ Ta;1ðRÞÞ[h, for suitable a, b,c, h.

This criterion, as originally stated in Ritchie (2001), has certain formal flaws.

Firstly, unlike most of the other criteria, the left hand side value does not range

between 0 and 1, but is unbounded. Secondly, in cases where there are no high-

value highly typical values (Vc;1ðRÞ \ Ta;1ðRÞ is empty), the ratio involves division

by zero. The revised version below avoids these undesirable properties, but makes a

slightly different comparison—high-value untypical items and all high-value items:

Criterion 8a ratio ðVc;1ðRÞ \ T0;bðRÞ;Vc;1ðRÞÞ[h, for suitable a, b,c, h.

We have now introduced all the threshold parameters which will be used in these

criteria: a (threshold to achieve high typicality), b (limit of untypicality), c
(threshold to achieve good quality), and h (general comparison level in all criteria).

Now we turn to another aspect of novelty, namely the extent to which the

program reproduces known examples. Earlier, we proposed criteria 1 and 2 to allow

consideration of a lower level of attainment than is sometimes considered in more

philosophical discussions. Similarly, it is useful to consider a way of defining ‘mere

replication’, as this may, particularly in the earlier stages of development of a

program, be a useful goal to achieve. Ritchie and Hanna (1984) comment that even

if the AM program (Lenat 1976) had not produced anything original, but had

‘merely’ shown a computational route by which many interesting (known) concepts

could in principle be reached, that would have been a useful finding. The next

criterion formalises that idea—replicating a large proportion of the inspiring set I:

Criterion 9 ratio ðI \ R; IÞ[h for suitable h.

However, there is general agreement that producing more than just the inspiring

set is a symptom of creativity, and this can be described by considering the ratio of

the whole result set to the subset which are replications:

Criterion 10 ratio ðR; I \ RÞ[h, for suitable h.

This is another criterion whose original statement (Ritchie 2001a) has formal

flaws. Its left hand side value does not range between 0 and 1, and, in cases where

Criteria for Computational Creativity 79

123

there are no replicated values (I\ R is empty), the ratio involves division by zero. A

revised version could be formed by inverting the ratio, but this would lead to a

criterion with ‘‘less than’’ as its central operator, inelegantly different from the

other criteria. A better revision is the following:

Criterion 10a ð1� ratioðI \ R;RÞÞ[h, for suitable h.

Let us turn now to novel results (i.e. items not in the inspiring set): R � I. Simply

producing unknown items is not interesting unless they have some significant

properties. Firstly, they could, on average, be exemplars of the chosen genre:

Criterion 11 AVðtyp; ðR� IÞÞ[h, for suitable h.

Another possible success condition would be that novel items were, on average,

highly valued:

Criterion 12 AVðval; ðR� IÞÞ[h, for suitable h.

To be more demanding, we could ask whether novel and highly typical items

form a significant proportion of the results:

Criterion 13 ratioðTa;1ðR� IÞ;RÞ[h, for suitable a, h.

Similarly, we could ask if novel and high quality items are a high proportion of

the results:

Criterion 14 ratioðVc;1ðR� IÞ;RÞ[h, for suitable c, h.

The above are the only criteria originally presented in [Ritchie 2001], but there

are a few more which suggest themselves on the basis of the last few in the list. We

could similarly consider whether highly typical items formed a high proportion of

the novel items:

Criterion 15 ratioðTa;1ðR� IÞ; ðR� IÞÞ[h, for suitable a, h.

Similarly, the proportion of high-valued items amongst the novel items could be

considered:

Criterion 16 ratioðVc;1ðR� IÞ; ðR� IÞÞ[h, for suitable c, h.

The last two conditions to consider are the occurrence within the novel results of

items which are of good quality and highly typical (i.e. demonstrate creativity

within existing norms) or are of good quality and untypical (i.e. demonstrate some

original deviation from past practice):

Criterion 17 ratioðVc;1ðR� IÞ \ Ta;1ðR� IÞÞ; ðR� IÞÞ[h, for suitable a, c, h.

80 G. Ritchie

123

Criterion 18 ratioðVc;1ðR� IÞ \ T0;bðR� IÞ; ðR� IÞÞ[h, for suitable b, c, h.

All of criteria 11–18 would be inapplicable in the case where ðR� IÞ ¼ ; . In the

case I = ; (see ‘The Framework’, earlier), criteria 9 and 10 would have to be

avoided, but other criteria involving I should still function in an orderly fashion.)

Related Proposals

The central ideas of the previous section were first presented in Ritchie (2001), and

have been followed by a number of elaborations (Colton et al. 2001; Pease et al.

2001). We shall review this subsequent work here, as well as some separate

proposals by (Koza et al. 2003), before considering some applications of the ideas to

actual systems.

Fine Tuning

Colton et al. (2001) (CPR) provide a small elaboration of the basic framework

outlined above. Their aim is to define more precisely what would count as fine-
tuning a program—that is, arranging the input knowledge of a program so as to

produce particular output: ‘‘A program which has been carefully tailored in order to

produce very specific artefacts cannot be claimed to be a good program on the

grounds that it produces those artefacts.’’

The basic framework already allows a crude indication of such a situation,

namely where the inspiring set and the result set are identical, or almost so. Such a

scenario might be rated poorly in creative terms (it would score badly on criterion

10/10a, and, a fortiori, on criteria 13 and 14), but it could still be interesting from a

research point of view, since—as noted earlier—it might well demonstrate, and test

by implementation, a mechanistic route from very simple data to interestingly

complex output.

CPR refine this approach. They posit a program working with some set K of input

knowledge, and then consider the effect, on the set of high-valued output from the

program, of removing some knowledge K0; i.e. starting from (K�K0) instead. The

output items in question would, in the notation used above, be Vc,1(R) for some

chosen c. CPR notate these as VK (where the full knowledge set is used) and VðK�K 0Þ
where K0 is omitted, and then define:

• K0 is creatively irrelevant if VK ¼ VðK�K 0Þ
• K0 is creatively useful if VðK�K0Þ � VK

• K0 is creatively destructive if VK � VðK�K0Þ

If I is, as before, the inspiring set, then any output artefacts belonging to I are

‘reinventions’, and high-valued output artefacts not in I are what CPR call the

creative set. They suggest defining K0 (the change in input knowledge) as being fine-
tuned if VK � VðK�K0Þ intersects with I (i.e. includes some reinventions) and does not

overlap with the creative set set produced with input knowledge K (i.e. includes

none of the high-valued new inventions).

Criteria for Computational Creativity 81

123

CPR also propose a definition of a degree of fine-tuning for a set of knowledge

K0, in the case where there are at least some high-valued new items in VK � VðK�K 0Þ.

ftðK 0Þ ¼
jI \ ðVK � VðK�K0ÞÞj
jðVK � VðK�K 0ÞÞ � Ij ð1Þ

(These formulae have been set-theoretically simplified from CPR’s presentation)

They offer two possible definitions of how fine-tuned a program P is, starting

from an inspiring set I and a knowledge set K:

m1: Take the union of all knowledge sets K0 (subsets of K) which are fine-tuned

(by the definition above). Divide the size of this set by the size of K.

m2: Compute the maximum value of ftðK 0Þ for all subsets K0 of K.

CPR observe:

If m1 is greater than 0 or m2 greater than 1, we can claim that P using K has

been fine-tuned to some extent. If m1 is 1, P using K is completely fine-tuned,

in the sense that every item of knowledge in K contributes to some subset

(which non-redundantly contributes to VK) which is fine-tuned. If m2 is greater

than 1, then there is at least one such subset of K which is used more to

replicate known artefacts than to find new ones of value.

CPR also suggest that this perspective allows the comparison of the effects of different

pieces of knowledge. If P can be run with K set either to K0 [K1 or K0 [K2 , then the

various fine-tuning measures can be compared for K 0 ¼ K1 and K 0 ¼ K2.

Other Formalisations

Pease et al. (2001) (hereinafter ‘‘PWC’’) acknowledge the basic framework in

‘Evidence for creativity’ above, and offer some further formal definitions in the area

of computational creativity. Although the basic framework attempts to be relatively

neutral with respect to substantive theories of creativity, building in as few claims as

possible about what gives rise to creativity, PWC are bolder, incorporating some

relatively specific views about creative mechanisms into the constructs they

propose. We shall therefore discuss their ideas in two groups: very general

extensions, close to the neutral spirit of the framework, and more specific proposals

embodying particular ideas about creativity.

General Extensions

Subsets of inspiring set. PWC suggest that a fine distinction might usefully be made

between two possible forms of I: IS (all items known to the program designer) and

IW (the items the designer knows have influenced the program design). However,

they do not develop this refinement or incorporate it into the basic framework.

Novelty as complement of typicality. PWC suggest novelty could be formalised as

the fuzzy complement (with respect to the set R of results) of the fuzzy set defined

by the typ mapping, but this is not connected to other proposals.

82 G. Ritchie

123

Quality and affect. PWC point out that the quality of an artistic item is sometimes

related to the emotional response it evokes. Assuming that a number of human

subjects numerically rate each item for either positive or negative response, PWC

offer (without much discussion) 5 possible measures of quality: total of all ratings,

average of all ratings, total of positive ratings, total positive minus total negative,

and average of positive ratings.

More Specific Proposals

Program process: randomness, meta-level and complexity. PWC delve further into

the process whereby a program produces an artefact (cf. ‘Assumptions’ earlier).

They offer a formula for the ‘‘randomness’’ of an artefact, based on a probability

distribution for particular outputs given particular inputs, and a distance measure

between artefacts. Also, they present 5 possible ways of computing the complexity
of an output artefact (and one for the complexity of a program), mostly based on

comparing sets of knowledge items used (cf. ‘Fine tuning’ above). They say these

could yield ‘‘a useful measure of novelty’’, but do not explain why complexity and

novelty are synonymous. They quote (Bundy 1994) as suggesting that the

complexity of a concept space might be relevant to creativity, but their measures

mainly assess the complexity of a single artefact, not of a concept space.

PWC suggest that meta-level processing is central to creativity, by proposing to

partition a program’s knowledge into either object or meta, and labelling the degree

of novelty of an output item according to which types of knowledge have been used

in generating it (along with some complexity conditions).

Surprise. PWC offer a formula for the surprise of an artefact, depending on a

similarity measure for events, and a probability distribution over events.

PWC–Overall

Although PWC’s proposals at first glance appear to be an elaboration of our basic

framework, on closer inspection it is not clear where they would fit into, or

alongside, our formalisation. The basic framework is a first attempt at setting out

which factors might be worth measuring in order to determine whether a program

has behaved creatively. It has deliberately been stated conservatively, with as few

substantive claims about creativity as possible while considering how established

ideas such as ‘‘novelty’’ and ‘‘quality’’ might be taken into account. PWC, on the

other hand, have taken some quite specific ideas about creativity, and suggested

some preliminary formalisations for them. They move from treating novelty as a

relatively primitive notion (similarity to existing artefacts, or to existing norms) to

loading it with specific ideas about what constitutes creativity. It is unclear whether

there is still a difference, for PWC, between novelty of an artefact and an artefact

being evidence of creativity: novelty seems to have become the central construct.

As their paper is relatively short, they do not give full supporting arguments for

the decisions they have made in designing their formula, some of which are not

completely obvious. PWC also do not link the various proposals together, so the

ideas remain relatively unconnected.

Criteria for Computational Creativity 83

123

Koza et al.’s Guidelines

Koza et al. (2003) discuss the extent to which genetic programming has been

successful as an approach to machine intelligence. They are not primarily concerned

with characterising creativity per se, but the issues which they consider have some

overlap with the concerns here. In contrast to our proposals, Koza et al. are looking

for empirical ways which might show that a method (of problem-solving or of

discovery) is successful (rather showing that a program is creative).1

Koza et al. claim that ‘‘genetic programming now routinely delivers high-return

human-competitive machine intelligence’’, and then say in more detail what they

mean by ‘‘routine(ly)’’, ‘‘high-return’’, ‘‘human-competitive’’ (and ‘‘machine

intelligence’’, though that turns out to be less closely related to the creativity factors

that our basic framework focusses upon).

Koza et al. term a method as routine if it can be applied to a new problem, or a

wide range of problems, with relatively little specialised adjustment. That is, routine

application is an indication of generality.

A method is high-return, on the other hand, if most of what it does is automated,

without a large investment of hand-crafted effort. Koza et al. view this as a ratio
(‘‘artificial-to-intelligence’’) which is high if value added by the problem-solving

method is significantly greater than the contribution of the human designers.

A computed result (what we are here calling an ‘‘artefact’’) is human-competitive
if it meets one or more of eight guidelines which Koza et al. provide. In the

terminology we have been using here, these tests can be viewed as various

combinations of quality (e.g. ‘‘The result solves a problem of indisputable difficulty

in the field’’), and/or H-novelty (e.g. ‘‘The result is publishable in its own right as a

new scientific result, independent of the fact that the result was mechanically

created’’) and/or P-novelty (e.g. ‘‘The result is equal to or better than a result which

was considered an achievement in its field at the time it was first discovered’’.

It might be possible to form a number of alternative definitions of ‘‘creative’’ for

computer programs by combining some of Koza et al.’s notions (since no single

definition in their repertoire corresponds directly with what we are focussing on).

For example a program which achieves human-competitiveness criterion [A] (‘‘The

result was patented as an invention in the past, is an improvement over a patented

invention, or would qualify today as a patentable new invention’’) and is also high-

return might be deemed to be creative.

The lack of a need for specialised tuning (as in ‘‘routine’’) does sound as if it

might affect judgements of creativity, but this intuition is more naturally captured

by their next attribute, ‘‘high-return’’. That attribute is predicated of a method, but a

similar perspective could be taken on a specific program (as, in fact, Koza et al. do,

when they cite the Deep Blue chess program as an example of a highly successful

program with a disappointingly low ‘‘AI ratio’’). The desirability of being ‘‘high-

return’’ is similar to the idea that the creativity of a program is less if the program

1 They are also very much focussed on what is sometimes called ‘knowledge-poor’ programming, where

a very general method does not need much hand-crafted domain knowledge to succeed. This focus is

underlined by the fact that they group together, for comparison with the method being assessed, ‘‘live

human players’’ and ‘‘human-written computer programs’’.

84 G. Ritchie

123

designer has injected a great deal of hand-crafted knowledge. The question is: how

can this be made precise, or even quantified? The use of the ‘‘inspiring set’’ in our

criteria, and Colton et al.’s definition of ‘‘fine-tuning’’ are very preliminary attempts

to get a hold on this idea.

The use of patentability (to show human-competitiveness) is an indicator of both

and quality and novelty. For example, guidelines for US patents2 state that ‘‘the

claimed invention as a whole must accomplish a practical application. That is, it

must produce a ‘‘useful, concrete and tangible result’’. This is a clear quality

requirement. These guidelines also stipulate the need for patent examiners to

‘‘conduct a thorough search of the prior art’’, an H-novelty constraint. (Koza et al.

broaden this to P-novelty, by allowing something that was patented in the past to

qualify as human-competitive.) The Patent Act 1977 in the UK3 demands that an

idea be ‘‘novel’’, ‘‘involve an inventive step’’ and ‘‘have industrial application’’.

An invention has an inventive step ‘‘if it is not obvious to a person skilled in the

art’’; a further guideline (for biotechnology) glosses this as situations where known

theory would make the outcome obvious.

Patentability (past or present) is quite a high standard for computer programs, in

the current state of the art (although Koza et al. cite some examples of patented

inventions by programs). Moreover, it would not, on its own, take into account the

contribution by the computer program (as opposed to knowledge or ideas supplied

by the programmer); hence Koza et al.’s use of ‘‘high-return’’. Also, the focus (at

least in the USA and the UK) on practicality means that patentability is inapplicable

in many of the areas explored by research into computational creativity—the UK’s

1977 Act explicitly excludes from eligibility for patenting: ‘‘a discovery, scientific

theory or mathematical method; a literary, dramatic, musical or artistic work or any

other aesthetic creation whatsoever; a scheme, rule or method for performing a

mental act, playing a game or doing busines, or a program for a computer; the

presentation of information’’.

On the whole, there is a overlap in concerns between Koza’s framework and ours,

but the methodological aims are slightly different.

Applications of the Criteria

A Poetry Generator

Gervás (2002) analyses one of his poetry-generating programs, WASP (Gervas

2000), using the criteria in ‘Evidence for Creativity’ above. WASP’s inspiring set is

a particular 16th century Spanish classical sonnet, which is taken as establishing the

allowable line lengths (in syllables) and stress patterns. The program then tries to

create four-line stanzas (cuartetos) that are part of the sonnet form. The generation

uses a set of line patterns (enforcing constraints of syllable count and stress patterns,

and based on the part-of-speech sequences occurring in the lines of the sonnet

2 http://www.uspto.gov/web/offices/pac/dapp/opla/preognotice/guidelines101_20051026.pdf
3 http://www.patent.gov.uk/patentsact1977.pdf

Criteria for Computational Creativity 85

123

chosen as starting point) and a set of vocabulary (the words of the original sonnet

and ‘‘a number of additional words’’, all annotated with syntactic and stress

information). Where more than one word can satisfy the metrical constraints, a

random choice is made, so that the process is non-deterministic and may yield

different output on different runs from the same input.

For testing, 14 different initialisations were used, and 12 runs were made with

each. The 168 resulting items were evaluated by volunteers, who scored each item

on syntactic correctness (0–5) and ‘‘aesthetic qualities’’. The syntactic correctness

score and the number of lines in the stanza (since some may fall short) are combined

to give a typ score, the aesthetic verdict providing the val score. Gervás explores the

effect of combining syntax and line-count scores with different weights, carrying

out assessments for weightings of 50/50, 30/70 and 70/30.

Gervás gives a table of values for the first 14 criteria (i.e. those listed in Ritchie

(2001)), but observes that as none of the inspiring set I appear in the result set R,

criteria 11–14 replicate the values of criteria 1–4, and criteria 9 & 10 give

pathological results (0.00 and division by zero); see Table 1. Gervás also

experiments with varying values for the thresholds a,b (the boundary typ value

between typical and atypical items) and c (the val value at which an item is deemed

valuable). He considers 5 different possibilities: equal thresholds, being either high

(0.7), medium (0.5) or low (0.3); high a,b and low c; low a,b and high c. He notes

that these thresholds affect only criteria 2, 4, 5, 6, 7, 8 (ignoring 9–14 for reasons

stated earlier), and offers Table 2 to summarise the effects (using the 50/50

weighting for typ calculation).

Gervás observes that threshold changes can cause large changes in the overall

rating for the criteria, and suggests that perhaps thresholds should be set beforehand

depending on the domain and/or the objectives of the system. He also speculates

that perhaps the typicality scale should have two thresholds: a low one below which

artefacts are deemed atypical, and a high one above which they are typical;

presumably artefacts in between are neither typical nor atypical. He does not say

exactly where these boundaries should be inserted in the definitions of the criteria,

but a plausible scheme would be to use the higher threshold where a is used, and the

lower one for b.

Table 1 Applying criteria to WASP data

Crit. Informal meaning 50/50 70/30 30/70

1 Average typicality 0.71 0.67 0.75

2 Typical results/results 0.54 0.48 0.79

3 Average quality 0.47 0.47 0.47

4 Good results/results 0.24 0.24 0.24

5 Good typical results/typical results 0.36 0.34 0.29

6 Good atypical results/results 0.05 0.08 0.01

7 Good atypical results/atypical results 0.12 0.16 0.06

8 Good atypical results/good typical results 0.28 0.52 0.05

86 G. Ritchie

123

Gervás also considers how the Colton et al. measure of ‘fine-tuning’ could be

applied to WASP, and concludes that ft will always have a value of 0, since there are

no re-inventions within the output set. However, he points out that this is because

the fine-tuning measure depends, with excessive simplicity, on a created item being

identical to an inspiring set element (in order for it to count as a re-invention).

Gervás rightly observes that where artefacts are extremely similar to elements of I,
that should contribute to a verdict of fine-tuning (see ‘Possible Extensions’).

Pereira et al. (2005) give a resume of the WASP study, and go on to carry out

similar examinations of two other programs, Divago and Dupond.

A Concept Generator

Divago (Pereira 2005) generates new concepts using conceptual blending
(Fauconnier and Turner 1998), with a genetic algorithm to explore the space. It

starts from a pair of concepts, such as (horse, bird) (from a knowledge base of

known concepts), and tries to find possible blends of these which meet a pre-

specified goal (e.g. ‘‘something which flies and is a transport means’’). Pereira et al.

describe experiments in applying Divago in three domains: horse–bird combina-

tions, interpretations for noun–noun compounds such as ‘‘pet fish’’, and novel

creatures (from a KB of three). In applying the creativity criteria to the results, they

do not use human judgements (as in the WASP study) to determine ratings for either

typ or val. Instead, they devise ways of computing these automatically from the

knowledge sources available to Divago, by making certain assumptions:

(a) The concepts in the original KB count as I.
(b) Typicality is measured by closeness to I (i.e. the KB defines the norms for

artefacts), using an edit-distance.

(c) Value is measured by how well the artefact meets the input goal (a factor

which is already used to guide Divago’s search).

Using the settings a = b = c = 0.5, the results for the original 14 criteria are as

given in Table 3 (here, criterion 10 is recomputed as 10a). Pereira et al. make a

number of observations about these findings:

• ‘‘The system is better at producing good items than typical ones.’’

• As the system is guided in its search by maximising Relevance, any typicality

achieved is an incidental side-effect of this process.

Table 2 Varying thresholds for WASP evaluation

Crit. High Medium Low a, b high c low a, b low c high

2 0.54 0.88 0.89 0.54 0.89

4 0.24 0.50 0.68 0.68 0.24

5 0.36 0.57 0.77 0.89 0.28

6 0.05 0.00 0.00 0.21 0.00

7 0.12 0.00 0.00 0.45 0.00

8 0.28 0.00 0.00 0.44 0.00

Criteria for Computational Creativity 87

123

• The apparently better results for the Creatures domain can be explained in terms

of properties of the data and the search spaces involved in the three domains.

A Paraphrase Generator

Pereira et al. also carried out a similar study with the Dupond system (Mendes et al.

2004), a program which generates approximate paraphrases of sentences by

replacing selected words with synonyms or hypernyms, in a manner with an element

of randomness. Human subjects were presented with 192 items which consisted of a

human-written sentence and three Dupond-generated variants of it: one using first

hypernyms (H1), one using synonyms with fewer senses (L), and one using

synonyms with more senses (M). The subjects classified the generated sentences

relative to the human source sentence, on 3-point scales, for being more original

(O), having the same meaning (S), being more comprehensible (U).

As in the Divago study (above), typicality was taken to be the opposite of

originality (the O ratings). Value was measured in two alternative ways: either the S

rating or the U rating.

Once again, the parameters a, b, c were all set to 0.5, in the absence of any

principled reason for any other values. Full criteria scores with val = S are provided,

but only for criteria 3–8 for val = U; all these are as in Table 4, with the U values in

brackets.

Pereira et al.’s Summing Up

Pereira et al. rightly observe that it is not realistic to compare scores achieved by

their different systems, as the applications are so different, although they believe

that more general claims can be made such as ‘‘Divago tends to be more creative

Table 3 Applying criteria to Divago data

Crit. Informal meaning Horse–Bird Noun–Noun Creature

1 Average typicality 0.443 0.543 0.343

2 Typical results/results 0.273 0.563 0.333

3 Average quality 0.504 0.782 1.0

4 Good results/results 0.636 0.781 1.0

5 Good typical results/typical results 1.0 0.778 1.0

6 Good atypical results/results 0.364 0.344 0.667

7 Good atypical results/atypical results 0.5 0.786 1.0

8 Good atypical results/good typical results 0.5 0.786 2.0

9 Results in I/I 0.00 0.036 0.0

10a 1-(Results in I/Results) 1.0 0.938 1.0

11 Average typicality of new results 0.406 0.513 0.308

12 Average quality of new results 0.483 0.831 1.0

13 Typical new results/new results 0.273 0.500 0.333

14 Good new results/results 0.636 0.781 1.0

88 G. Ritchie

123

than Dupond in a variety of criteria’’, and that one can argue that a particular

approach (e.g. genetic algorithms) leads to more creativity. Even these conclusions

may be over-interpretation of the findings, given the degree of arbitrariness in the

choice of constants (a, c) (which Pereira et al. remark on) and the varying

interpretations of notions such as ‘‘typicality’’ and ‘‘quality’’. As Pereira et al.

comment, care is needing in deciding how to assess these basic factors.

They also remark that the criteria involve typicality and value rather than novelty

and usefulness, conceding that value and usefulness might be equated but that

typicality and novelty are opposites. This perspective could be contested. The

criteria do not include novelty as a primitive construct, but do address novelty in

terms of the comparison with the inspiring set and also the notion of atypicality; that

is, novelty is decomposed into other, more basic, relations.

These authors conclude that although the criteria represent ‘‘consensual

properties’’ and ‘‘principles generally accepted’’, the problem lies in the

instantiation of the criteria and the lack of canonical problems.

A Melody Generator

(Haenen and Rauchas 2006) describe a program which generates melodies, with

some assessment using our criteria (as well as some statistical comparisons of

human judgements about the computer output). Each output was generated using the

characteristics of exactly one famous melody. Human judges were asked to rate

generated melodies on two scales: typicality (1–3) and quality (1–5). Typicality was

defined as being similarity to other melodies in a set made up of the 21 ‘inspiring’

items (famous melodies), the 21 generated melodies, and 6 randomly generated

melodies. To evaluate the formulae for the criteria, a (typicality threshold) was set

to 2/3, equivalent to the central score (‘‘somewhat typical’’), and two values of c

Table 4 Applying criteria to Dupond data

Crit. Informal meaning H1 L M

1 Average typicality 0.559 0.49 0.554

2 Typical R/R 0.75 0.475 0.65

3 Average quality 0.295(0.146) 0.495 (0.238) 0.426 (0.294)

4 Good R/R 0.1(0) 0.5(0.05) 0.4 (0.025)

5 Good typical R/typical R 0.1(0) 0.474 (0.053) 0.462(0.038)

6 Good atypical R/R 0.025(0) 0.3 (0.025) 0.125 (0)

7 Good atypical R/atypical R 0.091(0) 0.545(0.045) 0.333(0)

8 Good atypical R/good typical R 0.333(DIV BY 0) 1.333(1.0) 0.417(0)

9 Results in I/I 0.015 0.015 0.026

10a 1-(Results in I/Results) 0.985 0.985 0.975

11 Average typicality of new R 0.559 0.49 0.554

12 Average quality of new R 0.295 0.495 0.426

13 Typical new R/new R 0.75 0.475 0.65

14 Good new R/R 0.1 0.5 0.4

Criteria for Computational Creativity 89

123

(quality threshold) were explored: 3/5 (the central score, ‘‘indistinct melody, not

very interesting’’) and 3.87/5 (where 3.87 was the average rating given by the

judges to human-composed melodies). Haenen and Rauchas report that 18 of 21

artefacts exceeded the a value, 16 exceeded c = 0.667 and 8 exceeded c = 0.773,

and remark that ‘‘no results from the inspiring set appeared in the result set’’; they

therefore do not discuss criteria 9 to 4 in detail (cf. the WASP study, above). (I was

in effect a different singleton for each generated artefact.) Haenen and Rauchas,

following the practice of Gervás and Pereira et al., list the values for the criteria

(evaluated for the set of 21 generated artefacts), for their values of a and c. They

comment on the proportion exceeding the thresholds (cf. criteria 2, 4), and the fact

that one piece was rated as atypical but of good quality (cf. criteria 6, 7, 8). From the

latter artefact, they conclude that the program ‘‘is able to produce creative

melodies’’.

Haenen and Rauchas, in their short paper, do not discuss their use of the criteria

at length (and their statistical measures of the human judgement data may be more

illuminating), leaving some questions. Were there any implicit inspiring items in the

way that the program mechanisms were devised? Is similarity to the set of items

used in the study (inputs and outputs) a suitable yardstick of typicality? What, if

anything, can be inferred from the 8 criteria values listed for these results?

Discussion

Use of the Criteria

Probably the most central issue arising from the applications described in the

previous section is the intended usage of the criteria. Those who have applied them

to particular systems, as reviewed above, have treated all the 14 original criteria as

having equal status, and as providing a 14-point checklist or yardstick which will

provide a quantitative profile of the creativity level of the program. This is not how

they were intended. The aim of the original presentation of the criteria (Ritchie

2001) was to show how to make precise some factors which are of interest when

assessing a potentially creative program, in order to illustrate a range of possibilities

which would-be assessors of programs could select from, add to, or modify in a

systematic way. There is no consensus on what counts as creative, particularly when

considering programs. A framework such as the one outlined here allows for

multiple definitions of creativity (or definitions of different styles or levels of

creativity). As mentioned in ‘Assumptions’, for a computer to manage even to

produce ‘normal’ or ‘typical’ exemplars of a genre (thus scoring well on criteria 1

and 2) is a worthwhile task, but it is a different level of achievement from producing

highly-valued but untypical artefacts (criteria 6, 7, 8). This emphasises that the set

of criteria listed here should be considered as a repertoire from which one might

draw. The fact that (as observed in Ritchie (2001)) different criteria seem to lead in

different directions with respect to the underlying intuition about creativity is not a

problem. Rather, one can define different variants by suitable choices and

combinations of criteria.

90 G. Ritchie

123

More formally, the various parameters a, b, c, h in the above definitions are a

source of flexibility. Also, whatever criteria are formally defined (those given above

being an illustrative set) can be used selectively, or put into different logical

combinations, or various weights could be attached to them (so that the overall

creativity rating for a program’s behaviour could then be the weighted sum of the

results of specified criteria).

If we could settle on a set of criteria such as those listed in ‘Evidence for

Creativity’ above, then we could formally define a creativity judgement system as

being a set of values for the various parameters involved (a, b, ...). However, it is

premature to frame such a definition. We need to refine our ideas about suitable

criteria (and suitable parameters) before attempting standardisation in this way.

As already remarked, the criteria do not all pull in the same direction, as some

reward typicality and others give high scores to atypicality. Criteria 1 and 2 are not

even real evidence of creativity (nor originality, novel, surprise or quality), but mere

baseline measures to see if the program is at least succeeding at its core task of

creating the right kind of artefact. Similarly, criteria 9 merely checks whether the

program can at least replicate the kind of artefacts on which it is based. Criteria 3

and 4 reward value (quality) without regard for typicality, and so might be deemed

rather blunt probes. Criterion 5 looks for items which are both typical and good, and

so could be said to reflect Boden’s ‘‘exploratory’’ creativity (although Boden

characterises this, informally, in terms of a process—exploration—rather than in

terms of a resulting characteristic—typicality). Criteria 6,7 and 8 focus on untypical

but good, which (with the same caveat) might correspond to Boden’s ‘‘transfor-

mational’’ creativity. All of 1–7 take no account of past artefacts (particularly, the

inspiring set) except insofar as this is encoded into the notion of typicality. Criterion

10/10a looks for avoidance of the inspiring set, which in itself is not very

interesting, if the resulting artefacts have poor typicality or quality ratings; this is a

clear example of a criterion which might be a helpful component of a profile of the

behaviour of the program, but in isolation gives no evidence of interesting

creativity. Criteria 11–18 then concentrate on the novel results (outside the inspiring

set), but again there are different emphases available: 11, 13, 15, searching for

typicality alone (i.e. successful but unadventurous creation), with 12, 14, and 16

testing quality without regard for typicality, 17 seeking the conjunction, and 18

demanding what is sometimes viewed as the most creative combination: novelty

(both w.r.t. I and as low typicality) and high quality. This shows that not all these

criteria are equally demanding. Application of the criteria might be made more

subtle by separating them into subsets which represent different facets of program

behaviour:

Basic success: 1,2, 9

Unrestrained quality: 3,4

Conventional skill: 5

Unconventional skill: 6,7,8a

Avoiding replication: 10a

Basic success, avoiding replication: 11,13,15

Unrestrained quality, avoiding replication: 12,14,16

Criteria for Computational Creativity 91

123

Conventional skill, avoiding replication: 17

Unconventional skill, avoiding replication: 18

It is interesting to note that the authors who have made use of the criteria do not

use them as boolean conditions to be either satisfied or not, despite the fact that they

were originally stated in this way. Since the 14 criteria were stated as quantities to

be compared with h, the later writers have simply cited these quantities to give some

idea of the behaviour of the program. This avoids the need to make an arbitrary

choice for the threshold h, and allows a subtler statement of the extent to which a

program is meeting a criterion. This may be a better way to regard the ‘criteria’: as a

vector of values, all (in the revised set of 18) in [0,1], which constitute a profile of

the program’s behaviour.

The Meaning of the Criteria

Another notable aspect of the case studies surveyed in ‘Applications of the Criteria’

above is that some of these researchers have used the formulae of the original

criteria while making slight changes to the definitions of the primitive constructs,

which means that they are altering the meanings of the criteria.

In the Divago study, typicality (typ) is measured as closeness to I, which means

that what were two separate factors in the original criteria are now very closely

related, both in effect measuring avoidance of replication, instead of having typ
indicate success at constructing exemplars of some independently defined genre of

artefact. The Dupond study also tinkers with the typ rating, by setting it to embody

the opposite of a subjective judgement of being more original than the source

sentence. This may well have been a interesting factor to measure, but again it is a

different concept from a measurement of the extent to which an artefact falls within

some target class of artefacts. Haenen and Rauchas treat typicality as similarity to

the complete set of items involved in their study, including randomly generated

artefacts. It is not clear that this is the same intuitive notion as ‘typical example of

the intended artefact class’, and also it means that similarity to the inspiring set

(something which does not show up explicitly in their use of the criteria) becomes a

component of typicality, as in the Divago study. (Haenen and Rauchas also asked

their human judges to guess which melodies were human-written and which

computer-generated. This could have been used to give a computer piece a typ value

equal to the proportion of judges who thought it to be human-written, thereby

sticking closer to the original idea of human-judged conformity to cultural norms.)

Quality (val) is defined in the Divago study as closeness of fit to the program’s

input goal, a more subtle change of emphasis. While this does not alter the formal

meaning of the criteria—they were deliberately general and unconstrained about

how value ratings might be arrived at—it does shift the perspective by which we

view the Divago program. It is no longer aiming for some hazy, subjectively defined

notion of a ‘good’ artefact (as generators of melodies, stories, jokes, poems,

pictures, etc. usually do—see ‘Assumptions’), it is now searching in a space where

success can be completely defined algorithmically. It is more like a generator of

class timetables or of chip designs, where the space may be very large, but complete

92 G. Ritchie

123

success is not only possible but can be unambiguously detected if it occurs. It is not

completely obvious whether these elaborate criteria are appropriate in this simpler

situation.

The point is not that any of these modifications are wrong, or that inappropriate

factors have been considered. Rather, the problem is that the authors have changed

the meaning of the formulae while retaining the notation, without emphasising the

fact that they are focussing on slightly different factors. A cleaner approach would

have been to define different formulae or criteria, presenting a rationale for each

one, so that the set of attributes being measured would be more explicit. Formal

criteria like this offer a means of stating a particular view of what is interesting to

measure, but it is important to argue out the case for looking at particular properties,

rather than presenting the changes as mere minor amendments to formal definitions

which were originally justified on other grounds. Such redefinitions disguise what is

being measured.

Parameter Values

The question of how to determine the various thresholds a, b, c, h is far from trivial.

(The role of h could be eliminated, if, as suggested earlier, we treat the criteria not

as truth-valued conditions, but formulae providing values in [0,1].) One possibility

(following the way that Haenen and Rauchas (2006) chose a value for c) is to use

values determined by similar assessments of human-created artefacts. That is, if we

assume that typ and val correspond to subjective judgements, by human subjects, of

the qualities of artefacts, we could compute values such as the mean, standard

deviation, maximum, and minimum for the judgements of human generated
artefacts, and then use these in some way to define the thresholds for the assessment

of computer artefacts,

Possible Extensions

The ideas presented here are just a first step in building up a methodology for

assessing potentially creative programs. There are a number of ways in which they

could perhaps be elaborated to capture more subtle aspects of creative processing.

Similarity

One important weakness of the framework (raised by Ritchie (2001), Pease et al.

(2001), Pereira et al. (2005)), is that it does not handle the notion of similarity very

cleanly. In particular, the present criteria compare the result set with the inspiring

set only in terms of overlap in membership, but make no allowance for the idea that

output items could vary in the extent to which they are similar to those in the

inspiring set (as commented by Gervás, above). If we could define some form of

distance metric between basic items, then a more subtle approach would be possible.

The question of similarity/distance measures is a vast topic which it is not

feasible to explore here, but it is worth making one methodological point. Since our

Criteria for Computational Creativity 93

123

whole approach is based upon observing and measuring empirical aspects of

generating programs, with as little theorising as possible about how creativity

happens, any similarity measure used as part of the criteria should be based on

observable properties of generated artefacts. These could come, for example, from

ratings given by human subjects, either from direct judgements of similarity

between artefacts, or indirectly via ratings on a set of scales which could be

combined in some way to compute similarity/distance. Alternatively, a similarity

measure could be based on a theoretical model of the domain in question, but it

would be important to ensure that the similarity between artefacts could be

determined objectively without prejudging questions of novelty or creativity.

Regardless of how the similarity measure is defined, if we have a measure for the

distance between any two items, it should be possible to devise a suitable definition

of the distance of an item from a set (such as the inspiring set), or even the overall

distance of one set of items (e.g. the results) from another set (e.g. the inspiring set).

Then we could either rephrase those criteria which mention I to be more general and

distance-based, or it might be clearer to devise additional distance-based criteria.

For example, suppose that our distance function has (in some way) allowed the

definition, for any set S of basic items, of:

Nd(S): the d-neighbourhood of S, being the set of all items (including members

of S) which lie within distance d of the set S.

Then we can define counterparts of criteria 9 and 10/10a by replacing I \ R with

NdðIÞ \ R , and counterparts of 11–18 by replacing R � I with R� NdðIÞ for some

suitable value of d. (These could be criteria 9b, 10b, 11b, etc.)

There is another way in which a distance measure could throw light on aspects of

creativity. If we have a way of locating artefacts within a multi-dimensional space

(based either on similarity ratings or on assignment of properties to artefacts), then

we can consider the extent to which a program’s output is clustered. If the generated

items are all very similar to each other, and so are restricted to a narrow part of the

available space, that would be a further interesting factor in giving a ‘profile’ of the

performance of the program (if we adopt the perspective mentioned earlier, that the

criteria could be seen as characterising the behaviour of the program). Whether

narrow clustering indicates greater creativity than wide exploration does is a

question for debate. The suggestion by (Pereira et al. 2005) (see ‘Possible

Extensions’ below) that repetition is a sign of lower creativity could be generalised

to a proposal that near-repetition (as measured by similarity) is a symptom of less

creativity.

The Contribution of the Designer

It would be interesting to develop further the issue mentioned in ‘The Framework’

above: how does the program come into being, and what is its exact relationship to

the inspiring set? The question of making the inspiring set concrete and measurable

has been tackled in some specific ways in the studies reported in ‘Applications of

the Criteria’, usually by focussing on the items in some knowledge base which

94 G. Ritchie

123

drives the creative process. The way in which the program is designed, and how

input data are chosen, are still relatively uncharted.

Ritchie (2001) sketches a formalisation of some of the relevant stages: the

selection of the inspiring set I from B , taking into account typ and val; the devising

of both an algorithm for the program, and a tuple of input parameter domains which

show what arguments the program takes; the initialisation of parameter values for a

particular run of a program. All of these could be appraised from a creativity point

of view. At present, we offer no formal criteria for these subprocesses, but this

appears to be an area where our style of analysis could be applied.

It could be argued that this relaxes the strict assumption that we should not, when

assessing creativity, be examining how the creation occurred. However, the

extension sketched here would still not delve into the internal workings of the

program; rather, it would aim to clarify the role of the program designer, and the

extent to which pre-programmed knowledge might be biasing the outcomes. This is

the question that Koza et al. describe as the ‘artificial-to-intelligence’ ratio or colton

et al. raise as ‘fine tuning’.

A further, more advanced scenario is the situation where a user (maybe even the

program’s designer) intervenes during the running of the program, using knowledge

of what the program has already done in order to guide it in particular directions (as

in (Lenat 1976)). Such interventions are also relevant to the question of the extent of

the program’s own creativity. However, this is much more difficult to formalise and

assess. It would need some explicit model of the computation process which

allowed the idea of knowledge being added at intermediate stages, while not (to

conform to our core assumptions) taking undue account of the steps made within the

program. This is beyond the current framework.

Self-Rating of Output

Boden (1992, p. 83) suggests that one facet of human creativity is an ability to

recognise the worth of a created entity. At a very crude level, we could allow for a

generating program which assigns a rating to each item that it produces, indicating

either the typicality or value (or both) that the program allocates to that item. Some

programs (e.g. AM (Lenat 1979)) include a mechanism of this sort. It should be

feasible to devise further formal definitions (in addition to those in ‘Evidence for

Creativity’) which make use of this form of data. These additional criteria should

then capture the intuitive idea that the program’s rating of its own output ought (if

the program is to be deemed creative) to have a high correlation with corresponding

external ratings (gleaned, for example, from human judgements).

Multiple Runs

Pereira et al. criticise the criteria for describing a single set of program results,

rather than behaviour over time as a number of runs occur. They suggest that if a

system repeats itself in later runs, that is a sign of less creativity. There are three

logically separate issues here: repetition, non-determinism, and input parameters.

Criteria for Computational Creativity 95

123

The issue of repetition arises even without admitting multiple runs. We have

assumed throughout our discussions that the output R is a set of results. If we

generalise R to be a bag, then we can consider matters such as repetitions. If we

define R to be a sequence, we can also consider the order in which artefacts are

produced, although it is less obvious what the implications for creativity judgements

might be.

In the case of multiple program runs, if the program retains information from one

run to the next (via a persistent store of some sort), then the sequence of runs may be

regarded as instalments of one run, with results accumulating. In that case,

repetition could be handled much as in the single-run case, if we merge or

concatenate the output from the runs. On the other hand, if the program starts

completely afresh each time, then the question is whether the program behaves

identically (or similarly) on each run. If the program is sufficiently non-

deterministic that it may produce different results on successive runs, then a

comparison could made between the different result-sets for similarity, if we wished

to explore Pereira et al.’s intuition that variety is more creative.

The third consideration here is the effect of input parameters. We have largely

glossed over the idea that a program is affected by parameters (apart from ‘fine

tuning’). If successive runs of a program are carried out with different parameters,

then this allows a study of the effects of these parameters on the output.

Random Generation

Since the formalisation says little about how artefacts are generated, there is a sense

in which it does not exclude the random production of basic items. The level of

abstraction of the framework means that it has no way to distinguish random

generation from any other approach. Although random generation is not a hugely

interesting case from an AI point of view, it might, in certain discussions, be an

interesting baseline for comparison purposes. To allow explicit formal comparisons,

we would need a more detailed definition of the available space of basic items and

how this space could be randomly explored. One way to do that might be to

decompose the notion of ‘‘basic item’’ so as to make explicit the internal structure

of an item (e.g. as an array of pixels, or as a sequence of words). The other

requirement would be a suitable definition of ‘random combination of atomic parts’.

This might connect to the ideas of Wiggins (2006a), where a formalisation is

given of the notion of a potentially creative program exploring a space of concepts.

Some exploration strategies could be classed as ‘random’, or suitable baselines in

some other sense. If these were specified in sufficient detail to implement, or at least

to predict their outcomes, then the result set of such a benchmark strategy could be

compared with the result set of a supposedly creative program, in terms of typicality

and value. Statistical tests could be applied to determine how distinct these sets of

ratings were.

96 G. Ritchie

123

Conclusion

We have proposed an approach to the assessment of creativity (in programs) in

which relevant factors (such as the quality of produced artefacts) are made explicit

and are defined precisely. This allows the definition of a number of formulae

relating these factors, in ways which should show how successful the program has

been at certain aspects of the creative endeavour. ‘Possible Extensions’ lists just

some of the ways in which they could be improved. As noted in ‘Use of the

Criteria’, we do not see this list of criteria as forming a definite standard of

creativity. Instead, we offer it as an initial draft of a set of possible measures to be

applied to a program, to illuminate what it is and is not achieving. We hope that this

framework will stimulate discussion of what exactly should be considered when

debating the issue of creativity, and may contribute, in the longer term, to a sounder

basis for attributing creativity to programs.

The usefulness of some of the criteria, or the correctness of the particular

formalisation, may be disputed, but anyone who believes that questions about the

creative behaviour of programs are to be tested empirically should put forward some

comparably detailed ways in which creativity could be assessed.

Acknowledgements I would like to thank Geraint Wiggins, Simon Colton and Alison Pease for useful
discussions of this material, and Chris Thornton for comments on a draft.

References

Baggi, D. (Ed.). (1992). Readings in computer generated music. New York: IEEE Computer Society

Press.

Binsted, K., Pain, H., & Ritchie, G. (1997). Children’s evaluation of computer-generated punning riddles.

Pragmatics and Cognition, 5(2), 305–354.

Binsted, K., & Ritchie, G. (1997). Computational rules for generating punning riddles. Humor:
International Journal of Humor Research, 10(1), 25–76.

Boden, M. A. (1992). The creative mind (2nd ed.). London: Abacus. First published 1990.

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence, 103, 347–356.

Bundy, A. (1994). What is the difference between real creativity and mere novelty? Behavioral and Brain
Sciences, 17(3), 533–534. Open Peer Commentary on Boden (1992).

Colton, S. (2002). Automated theory formation in pure mathematics. Distinguished dissertations. London:

Springer-Verlag.

Colton, S., Bundy, A., & Walsh, T. (2000) Agent based cooperative theory formation in pure

mathematics. In G. Wiggins (Ed.), Proceedings of AISB 2000 symposium on creative and cultural
aspects and applications of AI and cognitive science (pp. 11–18). Birmingham, UK.

Colton, S., Pease, A., & Ritchie, G. (2001). The effect of input knowledge on creativity. In R. Weber & C.

G. von Wangenheim, (Eds.), Case-based reasoning: Papers from the workshop programme at
ICCBR 01, Vancouver.

Dreyfus, H. L. (1979). What computers can’t do. New York: Harper Row, revised edition. First edition

1972.

Fauconnier, G., & Turner, M. (1998). Conceptual integration networks. Cognitive Science, 22(2), 133–

187.

Gervás, P. (2000). WASP: Evaluation of different strategies for the automatic generation of Spanish

verse. In G. A. Wiggins (Ed.), Proceedings of the AISB 00 symposium on creative & cultural aspects
and applications of AI & cognitive science (pp. 93–100). Society for the Study of Artificial

Intelligence and Simulation of Behaviour.

Criteria for Computational Creativity 97

123

Gervás, P. (2001). Generating poetry from a prose text: Creativity versus faithfulness. In G. A. Wiggins

(Ed.), Proceedings of the AISB 01 symposium on artificial intelligence and creativity in arts and
science (pp. 93–99). Society for the Study of Artificial Intelligence and Simulation of Behaviour.

Gervás, P. (2002). Exploring quantitative evaluations of the creativity of automatic poets. In C. Bento, A.

Cardoso, & G. Wiggins (Eds.), 2nd workshop on creative systems, approaches to creativity in
artificial intelligence and cognitive science, ECAI 2002. Lyon, France.

Haenen, J., & Rauchas, S. (2006). Investigating artificial creativity by generating melodies, using

connectionist knowledge representation. In Proceedings of 3rd joint workshop on computational
creativity, ECAI (pp. 33–38). Italy: Riva del Garda.

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., & Lanza, G. (2003). Genetic
programming IV: Routine human-competitive machine intelligence. Kluwer Academic Publishers/

Springer.

Lenat, D. (1976). An artificial intelligence approach to discovery in mathematics as heuristic search.

Memo AIM-286, Department of Computer Science, Stanford University.

Lenat, D. (1979). On automated scientific theory formation: A case study using the AM program. In J.

Hayes, D. Michie, & L. Mikulich (Eds.), Machine intelligence 9 (pp. 251–283). Chichester: Ellis

Horwood.

Manurung, H. M., Ritchie, G., & Thompson, H. (2000a). A flexible integrated architecture for generating

poetic texts. In Proceedings of the fourth symposium on natural language processing (SNLP 2000)
(pp. 7–22). Thailand: Chiang Mai.

Manurung, H. M., Ritchie, G., & Thompson, H. (2000b). Towards a computational model of poetry

generation. In G. A. Wiggins (Ed.), Proceedings of the AISB 00 symposium on creative & cultural
aspects and applications of AI & cognitive science (pp. 79–86). Society for the Study of Artificial

Intelligence and Simulation of Behaviour.

Meehan, J. (1976). The metanovel: Writing stories by computer. PhD thesis, Yale University, Department

of Computer Science.

Mendes, M., Pereira, F. C., & Cardoso, A. (2004). Creativity in natural language: Studying lexical

relations. In Proceedings of LREC workshop on language resources for linguistic creativity.

Evaluations and Language Resources Distribution Agency.

Miranda, E. (2001). Composing music with computers. Amsterdam: Focal Press/Elsevier.

Pease, A., Winterstein, D., & Colton, S. (2001). Evaluating machine creativity. In R. Weber, & C. G. von

Wangenheim (Eds.), Case-based reasoning: Papers from the workshop programme at ICCBR 01
(pp. 129–137). Vancouver.

Pereira, F. C. (2005). A computational model of creativity. PhD thesis, Universidade de Coimbra.

Pereira, F. C., Mendes, M., Gervás, P., & Cardoso, A. (2005). Experiments with assessment of creative

systems: An application of Ritchie’s criteria. In P. Gervás, T. Veale, & A. Pease (Eds.), Proceedings
of the workshop on computational creativity, 19th international joint conference on artificial
intelligence (Technical Report 5-05, pp. 37–44). Departamento de Sistemas Informáticosy

Programación, Universidad Complutense de Madrid.

Ritchie, G. (2001). Assessing creativity. In Proceedings of the AISB symposium on artificial intelligence
and creativity in arts and science (pp. 3–11). York, England.

Ritchie, G. (2006). The transformational creativity hypothesis. New Generation Computing, 24, 241–266.

Ritchie, G. D., & Hanna, F. K. (1984). AM: A case study in AI methodology. Artificial Intelligence, 23,

249–268.

Steel, G., Colton, S., Bundy, A., & Walsh, T. (2000). Cross-domain mathematical concept formation. In

G. Wiggins, (Ed.), Proceedings of AISB 2000 symposium on creative and cultural aspects and
applications of AI and cognitive science (pp. 3–10). Birmingham, UK.

Stock, O., & Strapparava, C. (2005). The act of creating humorous acronyms. Applied Artificial
Intelligence, 19(2), 137–151.

Turner, S. R. (1994). The creative process: A computer model of storytelling. Hillsdale, NJ: Lawrence

Erlbaum Associates

Weizenbaum, J. (1976). Computer power and human reason. San Francisco: Freeman.

Wiggins, G. (2001). Towards a more precise characterisation of creativity in AI. In R. Weber, & C. G.

von Wangenheim (Eds.), Case-based reasoning: Papers from the workshop programme at ICCBR
01. Vancouver: Navy Center for Applied Research in Artificial Intelligence.

Wiggins, G. (2003). Categorising creative systems. In Proceedings of third (IJCAI) workshop on creative
systems: Approaches to creativity in artificial intelligence and cognitive science.

98 G. Ritchie

123

Wiggins, G. (2005). Searching for computational creativity. In P. Gervás, T. Veale, & A. Pease (Eds.),

Proceedings of the IJCAI-05 workshop on computational creativity (Technical Report 5-05, pp.

68–73). Departamento de Sistemas Informáticos y Programación, Universidad Complutense de

Madrid.

Wiggins, G. (2006a). A preliminary framework for description, analysis and comparison of creative

systems. Knowledge-Based Systems, 19, 449–458.

Wiggins, G. A. (2006b). Searching for computational creativity. New Generation Computing, 24(3),

209–222.

Criteria for Computational Creativity 99

123

	Some Empirical Criteria for Attributing Creativity �to a Computer Program
	Abstract
	Introduction
	Assumptions
	What Kinds of Activity are Creative?
	The Basis in Human Creativity
	Sources of Evidence
	What Kind of Program?
	P-Creativity and H-Creativity
	Essential Properties

	The Framework
	Basic Items
	Rating the Output
	The Objects Generated
	Inspiring Set, Program and Results

	Evidence for Creativity
	Preliminaries
	The Criteria

	Related Proposals
	Fine Tuning
	Other Formalisations
	General Extensions
	More Specific Proposals
	PWC-Overall

	Koza et al.’s Guidelines

	Applications of the Criteria
	A Poetry Generator
	A Concept Generator
	A Paraphrase Generator
	Pereira et al.’s Summing Up
	A Melody Generator

	Discussion
	Use of the Criteria
	The Meaning of the Criteria
	Parameter Values

	Possible Extensions
	Similarity
	The Contribution of the Designer
	Self-Rating of Output
	Multiple Runs
	Random Generation

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

