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Abstract

Building a computationally creative system is a chal-
lenging undertaking. While such systems are beginning
to proliferate, and a good number of them have been
reasonably well-documented, it may seem, especially
to newcomers to the field, that each system is a bespoke
design that bears little chance of revealing any general
knowledge about CC system building. This paper seeks
to dispel this concern by presenting an abstract CC sys-
tem description, or, in other words a practical, general
approach for constructing CC systems.

Introduction
The broad field of computational creativity (CC) admits
a range of autonomy, from creativity support tools to co-
creative systems to fully autonomous artificial agents, and
it is this last extreme which is the focus here. The notion
of an (autonomous) creative agent has been instantiated in
many different forms, and a variety of systems of varying
degrees of sophistication and efficacy have been built by the
CC community for creating artefacts in a broad range of do-
mains. Many of these systems have been documented in the
literature and their mechanisms described in some level of
detail. The goal of this paper is to generalize multiple ap-
proaches from different domains into an abstract system de-
scription that provides a sort of blueprint for how to build a
CC system for an arbitrary domain. The intent is to provide a
fairly straightforward distillation of (one view of) what is in-
volved in the construction of such a system, both to provide
a hands-on guide for the newcomer wishing to build such a
system and to stimulate discussion about what exactly is the
right way to go about building such a system.

To begin with, in this paper, computationally creative
agent means an agent whose behavior exhibits three charac-
teristics: novelty, value and intentionality. Note that the first
two are most commonly addressed with respect to product1,
while the third deals with process. For the purposes of this
discussion, these characteristics will be defined as follows:
novelty: the quality of being new, original or unusual; this

is relative to the population of artefacts in the domain in
question and can apply in the personal or historical sense.
1But also note that the use of “product” here is abstract, and

that, in particular, the artefact produced might itself be a process.

value: the importance, worth or usefulness of something;
this would typically be ascribed by practitioners of the
domain in question.

intentionality: the fact of being deliberative or purposive;
that is, the output of the system is the result of the sys-
tem having a goal or objective—the system’s product is
correlated with its process.

The goal here is to lay out how to build an autonomous
CC system, but it is, of course, possible to selectively apply
parts of what follows to build co-creative systems or even
“simple” creativity support tools as well, with the differenti-
ation (most) dependent on the level of creative responsibility
with which the final system is endowed. It is important to
note that the guidelines presented here are one current view
of things, based on experience both building and review-
ing multiple CC systems in widely differing domains, and
while the general concepts are meant to be somewhat defini-
tive, the examples and methodological suggestions given are
meant to be representative rather than prescriptive.

Building the System

The goal of an autonomous CC system is to intentionally
produce artefacts that are both novel and valuable in a given
domain. Figure 1 gives a functional design for such a sys-
tem, embedded in the target domain. The system is em-
bedded in the domain for several reasons: it has a domain-
specific knowledge base; it has a domain-appropriate aes-
thetic; and it has the ability to externalize artefacts that po-
tentially can contribute to the domain. In addition, the sys-
tem has an internal representation of artefacts that allows
it to reason about domain-related concepts and manipulate
these concepts to generate potential artefacts. It also has the
ability, based on its aesthetic, to evaluate both its internal
conceptualization and the translation of this conceptualiza-
tion into the realization of an artefact in the domain. Each of
these components will be considered in turn, while empha-
sizing that there is not a strict linear ordering to either their
development or their deployment; rather, both system devel-
opment and system operation are more likely semi-ordered,
iterative processes.



Figure 1: An abstract CC system is embedded in a particu-
lar domain of interest by incorporating both a repository of
domain knowledge and a domain-appropriate aesthetic that
together inform the production of artefacts that (potentially)
contribute to that domain. Artefacts are represented inter-
nally as a genotypic conceptualization that is manipulated
and evaluated internally and is eventually translated into an
externalizable phenotypic representation that is further eval-
uated for its suitability before (potentially) being exported to
the domain.

Domain
In contrast to traditional artificial intelligence tasks, which
are most often characterized with an objective function that
is to be maximized (or minimized), the kinds of problems
that CC systems are built to solve are of an entirely different
class. There is no such thing as a best song, or best theorem
or best design. One cannot maximize a piece of visual art or
a recipe or a poem. There are many interesting songs, theo-
rems, designs, paintings, recipes and poems, and the goal is
to find one or more of these. What constitutes a “solution”
for these types of “problems” is nothing like an optimiza-
tion problem, at least in the traditional sense. The first step
in building a CC system is to choose a domain D for which
it would be useful to build such a system. Because almost
any domain of endeavor can be argued to require creativ-
ity to meet at least some of its challenges, from the artistic
to the scientific to the mundane, the choice is really limited
only by the imagination. Indeed, successful CC systems al-
ready exist for a large variety of domains, including culinary
recipes (Morris et al. 2012; Varshney et al. 2013), language
constructs such as metaphor (Veale and Hao 2007) and ne-
ologism (Smith, Hintze, and Ventura 2014), visual art (Nor-
ton, Heath, and Ventura 2013; Colton 2012), poetry (Toiva-
nen et al. 2012; Oliveira 2012; Veale 2013), humor (Stock
and Strapparava 2003; Binsted and Ritchie 1994), adver-
tising and slogans (Strapparava, Valitutti, and Stock 2007;
Özbal, Pighin, and Strapparava 2013), narrative and story
telling (Riedl and Young 2010; Pérez y Pérez and Sharples
2004), mathematics (Colton, Bundy, and Walsh 1999),
games (Cook, Colton, and Gow 2016; Liapis, Yannakakis,

and Togelius 2012) and music (Bickerman et al. 2010;
Pachet and Roy 2014). Of course, none of these domains can
yet be considered “solved” by CC (indeed, for CC problems,
it is not clear that the idea of “solving” even makes sense),
so much work remains to be done even here. However, cer-
tainly there are many more domains for which the develop-
ment of CC systems will prove beneficial: product design (a
very general domain that could be further specialized to au-
tomobile design, electronics, clothing, software apps, etc.),
architecture, drug design, protein synthesis, trip planning,
robotics (physical systems, path planning, goal generation,
etc.)—the list is endless.

Representation
Given a domain, it is necessary to next choose an appropriate
representation for artefacts in that domain, and for the gen-
eral case, that entails actually choosing two representations:
a phenotype p that is an external, public representation, and
a genotype g that is an internal, private representation.2

Given the domain D, the phenotypic representation is of-
ten at least somewhat prescribed. For example, for the do-
main of narrative, the phenotype must be some version of
a story, for the domain of music it must be some kind of
song, for visual art, a painting, for mathematics, a theorem.
However, it may be convenient to choose some modification
P ' D as the phenotypic representation: a story outline, a
lead sheet, a digital image, a sequence of predicates. Then,
a specific phenotype p is the representation of an artefact in
the domain D (or its surrogate P ). So, p ∈ P ' D.

The genotypic representation G may be very different
from both D and P ; it should be a convenient form for
knowledge representation, reasoning, and manipulation. Us-
ing the same four examples, for the domain of narrative, it
might be entity-relationship graphs, schemata or plans; for
music, it might be MIDI or lead sheets or viewpoints; for
visual art, it could be arrays of pixel values, sequences of
image filters or sets of image segments; for mathematics, it
might be Prolog programs, trees or Boolean formulas. A
specific genotype g ∈ G is an encoding of a phenotype p
that is used internally by the system.

It will also be important to decide on a representation
for domain knowledge that will be used as the system’s
knowledge-base or experience. It may be convenient to
adopt the genotypic representation for representing knowl-
edge about the domain, or, it may be convenient to use the
phenotypic representation, or both.

Knowledge Base
Having the question of domain knowledge representation
settled, the next task is deciding on a way to collect rep-
resentations of that knowledge into a knowledge base K.
This will serve as the system’s experience and provide it
with its connection to the domain. Perhaps the most com-
mon means of populating K is by leveraging the web in
some way: scraping websites and cleaning the obtained data,

2We appropriate these terms without intending to imply the nor-
mal biological or evolutionary connotations with which they are
usually associated.



open-access or for-purchase corpora or databases, crowd-
sourcing, etc. K can also be populated using experts to
construct bespoke rules, prototypes, knowledge graphs, se-
mantic networks and the like. In the case of a system for
creating recipes, one might scrape recipe websites for in-
gredients, example recipes, their rankings, their categories,
etc.; for a poetry creation system, resources such as Google
n-grams, WordNet and ConceptNet might serve as a knowl-
edge base; for a joke-writing system, the knowledge base
might contain a set of rules constructed by professional hu-
morists; for a system intended to invent board games, K
could consist of a set of known board games (represented in
an appropriate language, such as the Stanford GDL (Love
et al. 2006)). This knowledge base K is used as a starting
point for the rest of the system; in particular, it will be used
to learn some kind of conceptual model of the domain and
may also be used to learn an appropriate aesthetic as well.

Aesthetic
An aesthetic A is an abstract measure of quality for artefacts
in the domain. Given the goal of producing artefacts that are
valuable and novel, this quality should in some way be cor-
related with these. Continuing the second set of examples,
aesthetic considerations for recipes might include
• appeal (is it tasty?),
• nutritional value (is it healthy?),
• cost/availability of ingredients (is it affordable?),
• surprising flavors (do these flavors somehow complement

each other?), etc.;
for poetry, they might include
• semantic coherence (does it make sense?),
• interestingness of theme (will it hold the reader’s atten-

tion?),
• metrical and/or rhyming considerations (is it interesting

to read?)
• and cultural reference (does it apply?);
for jokes, good measures may include
• funniness (will it make people laugh?),
• accessibility (will people get it?),
• surprise (is it different than expected?),
• timeliness (does it reference pop culture or current

events?),
• potential for shock or insult (will it make people angry?);
for board games, aesthetic factors might include
• playability (do the rules actually work?),
• winnability (can the game be won?),
• amount of time required (is it too long?),
• complexity (will people understand how to play?),
• enjoyability (is it fun to play?),
• and social considerations (how many people play? how

do they interact?).

The most straightforward way to imbue the system with an
aesthetic is to simply give it one—as the system designer,
decide on some set of measures for the system to use.

Another approach is to have the system learn an aesthetic
from the knowledge base, A = λa(K). That is, given the
information in K about (presumably both good and bad)
artefacts from the domain, the system makes use of some
learning function λa : K → A, to infer an aesthetic A ∈ A,
where K is the set of all knowledge bases and A is the set
of all aesthetic measures. This is appealing for its greater
system autonomy, but it may be difficult to effect, and the
result may not be interpretable (i.e., one may not know what
aesthetic the system is using, though some will argue this as
a positive advance).

Conceptualization

A conceptualization C of K is some kind of model of the
knowledge that facilitates the understanding of, and thus the
creation of, artefacts in the domain D (or the surrogate do-
main P ). This model is constructed via some kind of learn-
ing process λc : K → C, where C is the set of all conceptual
models; so, C = λc(K). The form of this conceptualization
can vary widely, but ideally it should admit some method
of reasoning about it and should be mutable. It should also
facilitate generation of artefact genotypes. Representative
examples include, for narrative, sets of characters, relation-
ships and actions or an engagement-reflection model; for
music, (hidden) Markov chains of transition probabilities
between pitches, durations or chords or probabilistic con-
text sensitive grammars; for visual art, a library of seman-
tically clustered images or generative adversarial networks;
for mathematics, axioms and operators or genetic programs;
for recipes, a list of ingredients and their relative or abso-
lute statistics or a model of chemical properties of ingredi-
ents; for poetry, templates or recurrent neural networks or
n-grams; for jokes, templates or skip-thought vectors; for
board games, a probabilistic grammar or set of cases.

Generation

The conceptualization should allow the system to generate
artefact genotypes via some generative function γ : C×S →
G, where S is a placeholder set meant to include anything
that might be useful in the generation process: inspiration
sources, randomness, examples, or even nothing at all. This
generative process might be a natural extension of the con-
ceptualization, or it might be quite distinct from it. Ex-
amples of the former include (hidden) Markov chains (just
sample the chain for some length of sequence), probabilistic
context sensitive grammars (sample a grammatical deriva-
tion), generative adversarial networks (cycle between gen-
erative network and adversarial network until output stabi-
lizes/error is low), recurrent neural networks (just stimulate
the network and record the output for the desired sequence
length). Examples of the latter include combinatoric ap-
proaches, chaining pre- and post-conditions, logic programs,
genetic algorithms, genetic programs, physical modeling or
simulation, template filling, and nearest neighbor methods.



Genotypic Evaluator
Given the ability to generate candidate genotypes, the sys-
tem requires some way to evaluate those genotypes—those
judged to have quality will be converted to phenotypes that
are further evaluated and may be released to the domain as
successful creations; those judged unfit can be discarded
or possibly modified to increase their quality. This evalu-
ation should consist of both a domain-specific assessment
of the value of an artefact and some kind of similarity mea-
sure for artefacts; these combined give a measure of both
value and novelty—the value rule allows filtering for value
potential and the similarity measure can be used to compare
a candidate with the population of K as well as with arte-
facts the system itself has previously created. Thus, what
is required is an evaluation function εg : G → [0...1]
which assigns some real-valued quality score to an arte-
fact g by taking into account both the value and the nov-
elty of G, perhaps most simply as a linear combination:
εg(g) = αυg(g) + (1 − α)νg(g), where υg : G → [0...1]
computes a value score for g, νg : G → [0...1] computes a
novelty score for g and 0 ≤ α ≤ 1.

The novelty score returned by νg should correlate in some
way with a notion of distance from known artefacts (i.e.
those in K ∪ Z, where Z contains those artefacts [already]
successfully created by the system), with a higher novelty
score indicating a greater distance from known artefacts.
The notion of distance will be representation-specific, of
course, and could be something as simple as a Hamming dis-
tance (in the case of binary strings), as common as Euclidean
distance for representations as points inRn or as exotic as a
generalized edit distance, where the notion of editing is ap-
propriately defined. Though this distance will typically be
explicitly designed based on the representation, there may
be situations in which it could make sense for the system to
learn a notion of distance (or even novelty directly) empiri-
cally from data in K.

The value score returned by υg should correlate with
the aesthetic A. That is, there should be some mapping
φg : A → E , where E is the set of valuation functions
whose domain is G and whose range is [0...1]. This map-
ping will likely be something ad hoc, with the function υg ,
being explicitly designed as part of the system, though again,
it may be possible to instead implement φg and allow the
system to learn υg . Another way to think of this is that υg
operationalizes A. Examples of a valuation function might
include measure of affect, or sentiment (via dictionaries)
or tension/resolution for stories; measuring melodic shape,
number of key changes, pitch range, uniqueness of chord
progression for music; affect, subject matter, color usage,
style for visual art; generality or simplicity for mathematics;
existence of unique ingredient combinations, complemen-
tary chemical taste profiles, number of calories or cost of
ingredients for recipes; identifiable meter, rhyming, affect,
sentiment, word usage for poetry; word usage, current event
usage, sentiment, incongruity in jokes; number of turns re-
quired, rule complexity, number of players, number of ludic
conditions, likelihood of a draw for board games.

Finally, it should be mentioned that it is possible in some
cases to partially or completely incorporate the functionality

of εg into the generative function γ, obviating the need for a
separate evaluation of g. For example, if a certain metrical
structure or rhyme scheme is highly valued in a poetic form,
the generative process may constrain all outputs to follow
that structure, or if the combination of dairy and meat prod-
ucts in a recipe were considered undesirable, the generative
process may disallow the combination. Of course, this kind
of constrained generation precludes exploring some parts of
the domain, so it should be used cautiously.

Translation
Given that the system is working with an internal, genotypic
representation g but that it must ultimately produce an exter-
nal, phenotypic representation p, some method of translation
is necessary. This translation mechanism may be thought of
as a helper function τ : {G∪ ⊥} → {P∪ ⊥}, where ⊥ rep-
resents the null artefact, which produces a phenotype from
a genotype; thus, p = τ(g) and ⊥= τ(⊥). Using τ , the
system turns a schema into a story or a Markov chain into
sheet music or a sequence of image filters into an image or
a Prolog program into a proof or a binary string into a list of
ingredients or a template into a poem or a bag of words into a
joke or a probabilistic grammar into a board game (descrip-
tion). This may be one of the easiest parts of the system
(e.g., obtaining an image from a sequence of image filters
is usually a simple matter of composing a few well-defined
function calls) or one of the most difficult parts (e.g., com-
posing a punchline from a bag of key words to make a joke
funny is completely ill-defined).

Phenotypic Evaluator
Genotypes that are evaluated highly enough will be trans-
lated (via τ ) into candidate phenotypes that must be evalu-
ated in their own right, with a function εp : P → [0...1].
This evaluation should be qualitatively different than its
genotypic counterpart because a) this is a different repre-
sentation and b) there is nothing to be gained by re-using
the same evaluation criteria. This is analogous to evaluat-
ing a piece of sheet music (genotype) by checking its agree-
ment with music theoretic principles on the one hand and
listening to how an audio track (phenotype) of the music
sounds when played (translation). This function, too, should
correlate with notions of value and/or novelty. And, again,
like εg , εp may be designed as an(other) operationalization
of A, or it may be learned by the system using a function
φp : A → E .

While the evaluator εg is most often somewhat piecewise
and (in some sense) cognitive in nature, εp may be more
holistic and very often is based in some form of perception.
Because of this, domains seem to vary widely in the ease
with which a phenotypic evaluator can be developed. For
some domains, we have a fairly good understanding of the
perception necessary to construct a phenotypic evaluation:
some kind of audio signal processing for music; computer
vision-based techniques for visual art; chemical analysis for
recipes; (simulated) game play for board games. For other
domains, this perceptual understanding is much less devel-
oped, and it is less clear how phenotypic evaluation can be
done: how do readers perceive a story as interesting? how



do mathematicians see beauty in a theorem? how do listen-
ers feel an emotional connection with a poem? how does an
audience find a joke funny?

Putting it all Together
With all the pieces in place, it is now possible to summarize
the entire process as follows. To build a CC system and
produce an artefact, follow these steps:

1. Choose a domain D

2. Choose a genotypic representation G and a phenotypic
representation P ' D

3. Collect data and build a knowledge base K

4. Choose a generator function γ

5. Choose aesthetic A [or build a function λa that allows the
system to learn A = λa(K)]

6. Choose a novelty measure νg and a value measure υg [or
build a function φg that allows the system to learn υg =
φg(A)] and construct a genotypic evaluator εg from νg
and υg

7. Choose a phenotypic evaluator εp [or build a function φp
that allows the system to learn εp = φp(A)]

8. C ← λc(K)

9. While εp(p) < θp

While εg(g) < θg
g ← γ(C, ρ)

p← τ(g)

10. return(p)

Looking at this more formally requires two additional
helper functions, Θg : {G∪ ⊥} → {G∪ ⊥} and Θp :
{P∪ ⊥} → {P∪ ⊥}, defined as follows:

Θg(x) =


⊥ if x =⊥
x if εg(x) >= θ

⊥ if εg(x) < θ

where θ is some threshold of acceptability, and Θp is defined
similarly. With these, the entire system operation for artefact
creation can be expressed as

a = Θp(τ(Θg(γ(λc(K), ρ))))

= Θp(τ(Θg(γ(C, ρ))))

= Θp(τ(Θg(g)))

= Θp(τ(g))

= Θp(p)

= p

when Θg(g) = g and Θp(p) = p, and a =⊥ otherwise.

Variations and Further Considerations
Simplifying
For some domains, it might be unnecessary to work with
both phenotypic and genotypic representations. While, in

Figure 2: A simplified abstract CC system may eschew an
internal representation, simplifying both the generation and
evaluation processes. The system is still embedded in a do-
main with both a knowledge base and an aesthetic, but now
its internal and external representations are equivalent, obvi-
ating the need for differentiated evaluation/generation mech-
anisms. It is likely that such a system will be limited in its
ability to intentionally produce quality artefacts for most do-
mains due to the lack of an ability for conceptualization.

general, this will likely limit the ability of the system to pro-
duce quality artefacts, in the case of simple tasks, prototyp-
ing or other less complex scenarios, it may be possible to
work directly with only a phenotypic representation. This
simplifies system design significantly (see Figure 2).

It is still necessary to choose a domain D and phenotypic
representation P ' D, collect a knowledge baseK, produce
an aesthetic A and its operationalization in the form of a
phenotypic evaluation function εp; however, the list of com-
ponents no longer required includes the genotypic represen-
tation G, the translation function τ , the genotypic evaluator
εg , the conceptualization model C and the learning mecha-
nism λc. In addition, because the system no longer has any
conceptualization nor genotypic representation, the genera-
tion function γ must be modified so that it depends directly
on K rather than on C and so that it outputs a phenotype p
rather than a genotype g; thus, now γ : K × S → P .

Then, the simplified process is

1. Choose a domain D

2. Choose a phenotypic representation P ' D
3. Collect data and build knowledge base K

4. Choose a generator function γ

5. Choose aesthetic A

6. Choose a phenotypic evaluator εp
7. While εp(p) < θp

g ← γ(K, ρ)

8. return(p)



and the formal description simplifies to

a = Θp(γ(K, ρ))

= Θp(p)

= p

Complexifying
Of course, in many more situations, not only will it not be
possible to simplify the original system as just discussed,
but also it will likely be necessary to introduce further com-
plexity to obtain satisfactory results. This complexification
can come in many forms, and more of these will be dis-
cussed later, but the most natural next step is likely to in-
troduce further domain-system interaction in the form of
teaching and feedback. This ability allows the system to
change over time, assimilating new domain knowledge as it
becomes available and incorporating feedback about its cre-
ations. This new knowledge and feedback can directly af-
fect the knowledge base K, directly or indirectly affect the
aesthetic A and directly or indirectly affect the conceptual-
ization C (see Figure 3). These effects can (and should) be
propagated throughout the system, introducing the need for
a time index t and obviating the need for some initial design
decisions (e.g. even the knowledge base does not need to be
fixed in advance). This facilitates dynamic knowledge ac-
quisition, conceptualization, evaluation and generative abil-
ities. Thus, the system can react to changes in the environ-
ment and become distanced from initial designer decisions.

Once again revisiting the process, a time index is now in-
corporated, but the overall flow remains recognizable:

1. Choose a domain D
2. Choose a genotypic representation G and a phenotypic

representation P ' D
3. Choose a generator function γ
4. Choose aesthetic learning function λa
5. Choose a novelty measure νg
6. Choose genotype evaluation learning function φg
7. Choose phenotype evaluation learning function φp
8. t = 0

9. While not done
t = t+ 1

Collect data and build knowledge base Kt

At ← λa(Kt)

υtg ← φg(At)

Construct a genotypic evaluator εtg from νg and υtg
εtp ← φp(At)

Ct ← λc(K
t)

While εtp(p) < θp

While εtg(g) < θg
g ← γ(Ct, ρ)
p← τ(g)

return(p)

Figure 3: For increased autonomy, and therefore, presum-
ably increased (potential) creativity, a CC system should not
only be embedded in a domain but should also be capable
of interacting with its embedding domain. This interaction
will most often take form of teaching and feedback that al-
lows the system both to dynamically update its background
knowledge base and aesthetic as new domain information
becomes available and to adapt its aesthetic, conceptualiza-
tion and generation mechanisms based on feedback it re-
ceives in response to the artefacts it creates (and releases
externally).

(The formal view of this does not change in an interest-
ing way, so it will not be repeated here with only minor
changes.)

Note the shift towards greater autonomy in the fact that
the a priori design decisions (made initially, before the oper-
ational loop) are being made for more abstract entities (i.e.,
designing functions for learning components rather than de-
signing the components themselves). Also, note that some
of this shift towards greater autonomy is not strictly neces-
sary in the sense that design decisions that make some sys-
tem component time-independent are certainly still possible.
On the other hand, it is also possible to consider designing
additional abstract learning functions that allow additional
components to become time dependent (e.g., γ, λa, λc, νg ,
τ , θg , θp).

Intentionality
Though novelty and value have been incorporated into the
construction or learning of the evaluation functions, sys-
tem intentionality has not yet been explicitly addressed. In
what way can a system built using the proposed approach be
claimed to be intentional?

The answer is first that, in a limited sense, the system has
a goal to produce novel, valuable artefacts in the domain D.
This may not be entirely satisfactory to critics who may ar-
gue (correctly) that the goal is imposed on the system by an
external agent (the designer); however, the definition of in-
tentionality offered in the introduction does not require that
the system invent its own goals (see the discussion on Turtles



below).
Another way the system may be said to exhibit intention-

ality is if its product (the artefacts it produces) is correlated
with its process (how it produces them). This is certainly
the case, by design, especially with respect to, for example,
the aesthetic-based evaluation mechanisms—the system has
intention to some extent because to some extent it “under-
stands” what it is creating.

Yet another possible indicator for intention, and one not
explicitly included in the CC system building process pro-
posed here, is an ability of the system to explain its process
and/or product—can the system justify in some way why
it made the decisions it made and why the result is what it
is? This is one example of the broad notion of framing, and
though not required as part of the blueprint provided here, it
is often desirable and sometimes not too difficult to incorpo-
rate some basic framing ability in CC systems (e.g., showing
source material for musical inspiration, explaining percep-
tion of images, showing the connection between setup and
punchline, etc.), and when this is done, it provides further
support for a claim of system intentionality.

(External) Evaluation
Once the system is running and producing artefacts, at some
point the question must be asked whether it is doing so sat-
isfactorily. Of course, from the system’s perspective, this
question has already been answered in the affirmative—by
design, any artefact produced has already been vetted (in
two different ways) and found to meet aesthetic and unique-
ness standards. However, this is not sufficient in the sense
that creation and contribution to a domain are inherently so-
cial processes—a creator can not be the sole arbiter when
it comes to the question of its creativity. Therefore, it be-
comes important to subject the system to external scrutiny.
While how best to do this is still an open question, there have
been multiple proposals for evaluation mechanisms for CC
systems. Collectively, these can examine both system prod-
uct and process and include Ritchie’s suggestions for for-
mally stated empirical criteria focusing on the relative value
and novelty of system output (2007); the FACE framework
for qualifying different kinds of creative acts performed by
a system (Colton, Charnley, and Pease 2011); the SPECS
methodology which requires evaluating the system against
standards that are drawn from a system specification-based
characterization of creativity (Jordanous 2012); and Ven-
tura’s proposed spectrum of abstract prototype systems that
can be used as landmarks by which specific CC systems can
be evaluated for their relative creative ability (2016).

A Note on Appropriation
Pablo Picasso is often credited with having said, “good
artists borrow; great artists steal”. In the context of build-
ing a CC system, it is perhaps stating the obvious to suggest
that one should avoid re-inventing the wheel when possible.
There are a great number of existing tools, web services,
and APIs that can be incorporated into the architecture of
a CC system as solutions for many of the components dis-
cussed here. In many cases, these tools are exactly what one

is wanting and may be found with some little effort (e.g.,
the many extant NLP and computer vision tools freely avail-
able on the web); in other cases, useful resources exist, but
may need to be discovered more serendipitously or cleverly
re-purposed (e.g., using an online list of “Top Tens” as a
source of pop culture references). The take away here should
be that it is often worth spending significant time searching
for existing resources instead of trying to build them from
scratch—it is very often the case that someone has already
done the work and done it well. Commonly, the main (en-
gineering) contribution of a CC system is not in the imple-
mentation of components but in the system building and ar-
chitectural work.

A Note on Turtles
It should be noted here that the proposed process for CC sys-
tem building does not incorporate state-of-the-art thinking
and address all the latest questions that are being asked in
the field, and that is not its intention. However, it does per-
haps come close to encapsulating the state-of-the-art with
respect to actual working CC systems currently being built.

There is certainly a great deal more that can be (and is
being) said about the topic, and, in particular, it should be
mentioned that the field of CC is by nature begging for treat-
ment at the meta-level. That is, it is fair game to consider the
domainD of knowledge representations or conceptual mod-
els or aesthetics or learning functions or evaluation functions
or goals, and to then attempt to build a CC system embed-
ded in that domain—a system for inventing new and useful
representations or conceptual models or aesthetics or learn-
ing/evaluation functions or goals. One could then consider
building a hierarchical system that incorporates meta-level
creativity to improve base-level creativity, increasing the
overall system autonomy and further distancing the (even-
tual) creative system from the original designer.

Of course, this begs the question of meta-meta-level con-
siderations, but it is not clear that such thinking is useful,
either for CC systems, nor perhaps even with respect to hu-
man cognition, and in any case, it is beyond the scope of the
current discussion.

Conclusion
The main contribution of this paper is a general recipe for
the construction of an autonomous, computationally cre-
ative agent, with the intention being that anyone can fol-
low the proposed process to build a CC agent for an arbi-
trary domain. Of course, domain-specific challenges are not
addressed here and remain as opportunities for the system
builders to act creatively themselves. A secondary contri-
bution of the paper is the initiation of a conversation about
whether or not the main contribution is realizable—is it pos-
sible to describe a useful, general-purpose approach to CC
system building?
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