	qiskit example (circuit symbol)	Notes/ Equivalencies	X-gate eigenstates		Y-gate eigenstates		Z-gate eigenstates	
<u>Single qubit</u> <u>gates</u>	last argument always indicates the qubit to which the gate is applied		$ +\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$	$ -\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix}$	$ \psi\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ i \end{bmatrix}$	$ \mathcal{O} \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} i \\ 1 \end{bmatrix}$	$ 0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix}$	$ 1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$
X-gate (Pauli) NOT-gate $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	qc.x(0)	Performs rotation of π radians around <i>X</i> -axis	$X +\rangle = +\rangle$	$X -\rangle = - -\rangle$	$X \mho\rangle = \mho\rangle$	$X O\rangle = O\rangle$	$X 0\rangle = 1\rangle$	$X 1\rangle = 0\rangle$
Y-gate (Pauli) $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	qс.у(0) q — Ү —	Performs rotation of π radians around <i>Y</i> -axis	$Y +\rangle = -i -\rangle$	$Y -\rangle = i +\rangle$	$Y \psi\rangle = \psi\rangle$	$Y \mathfrak{G}\rangle = - \mathfrak{G}\rangle$	$Y 0\rangle = i 1\rangle$	$Y 1\rangle = -i 0\rangle$
Z-gate (Pauli) $Z = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$	qc.z(0) q - <mark>z</mark> -	Performs rotation of π radians around <i>Z</i> -axis $Z = P(\pi)$	$Z +\rangle = -\rangle$	$Z -\rangle = +\rangle$	$Z \psi\rangle = -i \psi\rangle$	$Z O\rangle = i O\rangle$	$Z 0\rangle = 0\rangle$	$Z 1\rangle = - 1\rangle$
H-gate Hadamard gate $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$	qс.h(0) q — н —	$H = U\left(\frac{\pi}{2}, 0, \pi\right)$	$H +\rangle = 0\rangle$	$H -\rangle = 1\rangle$	$H \psi\rangle = \sqrt{-i} \psi\rangle$	$H \mathfrak{G}\rangle = \sqrt{i} \mathfrak{D}\rangle$	$H 0\rangle = +\rangle$	$H 1\rangle = -\rangle$
P-gate Phase gate $P(\phi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix}$	qc.p(pi/4,0) q - <mark>P</mark> - _{n/4}	Performs rotation of ϕ around <i>Z</i> -axis $P(\phi)$ = $U(0,0,\phi)$	$P\left(\frac{\pi}{4}\right) +\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\\sqrt{i} \end{bmatrix}$	$P\left(\frac{\pi}{4}\right) -\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -\sqrt{i} \end{bmatrix}$	$P\left(\frac{\pi}{4}\right) \psi\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ i\sqrt{i} \end{bmatrix}$	$P\left(\frac{\pi}{4}\right) O\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ -i\sqrt{i} \end{bmatrix}$	$P\left(\frac{\pi}{4}\right) 0\rangle = 0\rangle$	$P\left(\frac{\pi}{4}\right) 1\rangle = \sqrt{i} 1\rangle$
S-gate \sqrt{Z} -gate $S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$,	qc.s(0) q - s -	$SS = Z$ $S = P(\pi/2)$	$S +\rangle = U\rangle$	$S -\rangle = -i O\rangle$	$S \psi\rangle = -\rangle$	$S O\rangle = i +\rangle$	$S 0\rangle = 0\rangle$	$S 1\rangle = i 1\rangle$
$T-gate \sqrt[4]{Z}-gate T = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{i} \end{bmatrix}$	qc.t(0) q _ T _	$TTTT = Z$ $T = P(\pi/4)$	$T +\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ \sqrt{i} \end{bmatrix}$	$T -\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -\sqrt{i} \end{bmatrix}$	$T \psi\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ i\sqrt{i} \end{bmatrix}$	$T O\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ -i\sqrt{i} \end{bmatrix}$	$T 0\rangle = 0\rangle$	$T 1\rangle = \sqrt{i} 1\rangle$
I-gate Identity gate Id-gate $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	qc.i(0)	I = XX $I = P(0)$	$I +\rangle = +\rangle$	$I -\rangle = -\rangle$	$I \psi\rangle = \psi\rangle$	$I O\rangle = O\rangle$	$I 0\rangle = 0\rangle$	$I 1\rangle = 1\rangle$
$T^{\dagger}\text{-gate}$ T-dagger $\frac{4}{Z^{\dagger}}\text{-gate}$ $T^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{-i} \end{bmatrix}$	gc.tdg(0) q - T[†] -	$T^{\dagger}T^{\dagger}T^{\dagger}T^{\dagger} = Z$ $T^{\dagger} = P(-\pi/4)$	$T +\rangle = \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{-i}} \right]$	$T -\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -\sqrt{-i} \end{bmatrix}$	$T \psi\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ i\sqrt{-i} \end{bmatrix}$	$T O\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ -i\sqrt{-i} \end{bmatrix}$	$T^{\dagger} 0\rangle = 0\rangle$	$T^{\dagger} 1\rangle = -\sqrt{i} 1\rangle$
$S^{\dagger}\text{-gate}$ S-dagger $\sqrt{Z^{\dagger}}\text{-gate}$ $S^{\dagger} = \begin{bmatrix} 1 & 0\\ 0 & -i \end{bmatrix}$	gc.sdg(0) q <mark>-</mark> s† -	$S^{\dagger}S^{\dagger} = Z$ $S^{\dagger} = P(-\pi/2)$	$S^{\dagger} +\rangle = -i 0\rangle$	$S^{\dagger} -\rangle = \psi\rangle$	$S^{\dagger} O\rangle = +\rangle$	$S^{\dagger} O\rangle = i -\rangle$	$S^{\dagger} 0\rangle = 0\rangle$	$S^{\dagger} 1\rangle = -i 1\rangle$
U-gate $(\theta, \phi, \lambda) = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) & -e^{i\lambda}\sin\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) & e^{i(\phi+\lambda)}\cos\left(\frac{\theta}{2}\right) \end{bmatrix}$	qc.u(pi/2,0,pi,0) q - U -	most general of all single-qubit quantum gates	$U\left(\frac{\pi}{2},0,\pi\right) +\rangle = 0\rangle$	$U\left(\frac{\pi}{2},0,\pi\right) -\rangle = 1\rangle$	$U\left(\frac{\pi}{2},0,\pi\right) \psi\rangle = \sqrt{-i} \psi\rangle$	$U\left(\frac{\pi}{2}, 0, \pi\right) \mathfrak{G} \rangle = \sqrt{i} \mathfrak{G} \rangle$	$U\left(\frac{\pi}{2}, 0, \pi\right) 0\rangle = +\rangle$	$U\left(\frac{\pi}{2}, 0, \pi\right) 0\rangle = -\rangle$

U