	qiskit example (circuit symbol)	Notes/ Equivalencies	X-gate eigenstates		Y-gate eigenstates		Z-gate eigenstates	
Single qubit gates	last argument always indicates the qubit to which the gate is applied				$\|U\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l} 1 \\ i \end{array}\right]$	$\|v\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l} i \\ 1 \end{array}\right]$	$\|0\rangle=\left[\begin{array}{l} 1 \\ 0 \end{array}\right]$	$\|1\rangle=\left[\begin{array}{l} 0 \\ 1 \end{array}\right]$
X-gate (Pauli) NOT-gate $X=\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]$	qc.x(0)	Performs rotation of π radians around X-axis	$X\|+\rangle=\|+\rangle$	$x\|-\rangle=-\|-\rangle$	$X\|U\rangle=\|\cup\rangle$	$X\|\cup\rangle=\|\cup\rangle$	$X\|0\rangle=\|1\rangle$	$X\|1\rangle=\|0\rangle$
Y-gate (Pauli) $Y=\left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right]$	qc.y(0)	Performs rotation of π radians around Y-axis	$Y\|+\rangle=-i\|-\rangle$	$Y\|-\rangle=i\|+\rangle$	$Y\|U\rangle=\|U\rangle$	$Y\|\sigma\rangle=-\|\cup\rangle$	$Y\|0\rangle=i\|1\rangle$	$Y\|1\rangle=-i\|0\rangle$
Z-gate (Pauli) $Z=\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$	$\text { qc.z (} 0 \text {) }$ $q-z-$	Performs rotation of π radians around Z-axis $Z=P(\pi)$	$Z\|+\rangle=\|-\rangle$	$Z\|-\rangle=\|+\rangle$	$Z\|\cup\rangle=-i\|\cup\rangle$	$Z\|\cup\rangle=i\|\cup\rangle$	$Z\|0\rangle=\|0\rangle$	$Z\|1\rangle=-\|1\rangle$
H-gate Hadamard gate $H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right]$	qc.h(0) $q-H-$	$H=U\left(\frac{\pi}{2}, 0, \pi\right)$	$H\|+\rangle=\|0\rangle$	$H\|-\rangle=\|1\rangle$	$H\|U\rangle=\sqrt{-i}\|\cup\rangle$	$H\|\cup\rangle=\sqrt{i}\|\cup\rangle$	$H\|0\rangle=\|+\rangle$	$H\|1\rangle=\|-\rangle$
P-gate Phase gate $P(\phi)=\left[\begin{array}{cc} 1 & 0 \\ 0 & e^{i \phi} \end{array}\right]$	$q c . p(p i / 4,0)$	Performs rotation of ϕ around Z-axis $\begin{aligned} & P(\phi) \\ & =U(0,0, \phi) \end{aligned}$	$P\left(\frac{\pi}{4}\right)\|+\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ \sqrt{i} \end{array}\right]$	$P\left(\frac{\pi}{4}\right)\|-\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ -\sqrt{i} \end{array}\right]$	$P\left(\frac{\pi}{4}\right)\|U\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ i \sqrt{i} \end{array}\right]$	$P\left(\frac{\pi}{4}\right)\|\circlearrowleft\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} -1 \\ -i \sqrt{i} \end{array}\right]$	$P\left(\frac{\pi}{4}\right)\|0\rangle=\|0\rangle$	$P\left(\frac{\pi}{4}\right)\|1\rangle=\sqrt{i}\|1\rangle$
S-gate \sqrt{Z}-gate $S=\left[\begin{array}{ll} 1 & 0 \\ 0 & i \end{array}\right]$	qc.s(0) $q-s-$	$\begin{gathered} S S=Z \\ S=P(\pi / 2) \end{gathered}$	$S\|+\rangle=\|U\rangle$	$S\|-\rangle=-i\|\cup\rangle$	$S\|\cup\rangle=\|-\rangle$	$S\|\cup\rangle=i\|+\rangle$	$S\|0\rangle=\|0\rangle$	$S\|1\rangle=i\|1\rangle$
T-gate $\sqrt[4]{Z}$-gate $T=\left[\begin{array}{cc} 1 & 0 \\ 0 & \sqrt{i} \end{array}\right]$	$q c . t(0)$ $q-\mathrm{T}-$	$\begin{gathered} T T T T=Z \\ T=P(\pi / 4) \end{gathered}$	$T\|+\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ \sqrt{i} \end{array}\right]$	$T\|-\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ -\sqrt{i} \end{array}\right]$ 10)	$T\|\circlearrowright\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ i \sqrt{i} \end{array}\right]$	$T\|\cup\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} -1 \\ -i \sqrt{i} \end{array}\right]$	$T\|0\rangle=\|0\rangle$	$T\|1\rangle=\sqrt{i}\|1\rangle$
I-gate Identity gate Id-gate $I=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]$	qc.i(0) q	$\begin{gathered} I=X X \\ I=P(0) \end{gathered}$	$I\|+\rangle=\|+\rangle$		$\text { I\|U }\|=\| 0\rangle$	$I\|v\rangle=\|v\rangle$	$I\|0\rangle=\|0\rangle$	$I\|1\rangle=\|1\rangle$
T^{\dagger}-gate T-dagger $\sqrt[4]{Z^{\dagger}}$-gate $T^{\dagger}=\left[\begin{array}{cc} 1 & 0 \\ 0 & \sqrt{-i} \end{array}\right]$	qc.tdg(0) $q-\mathrm{T}^{\dagger}-$	$\begin{aligned} & T^{\dagger} T^{\dagger} T^{\dagger} T^{\dagger}=Z \\ & T^{\dagger}=P(-\pi / 4) \end{aligned}$	$T\|+\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ \sqrt{-i} \end{array}\right]$	$T\|-\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ -\sqrt{-i} \end{array}\right]$	$T\|U\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ i \sqrt{-i} \end{array}\right]$	$T\|\cup\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c} -1 \\ -i \sqrt{-i} \end{array}\right]$	$T^{\dagger}\|0\rangle=\|0\rangle$	$T^{\dagger}\|1\rangle=-\sqrt{i}\|1\rangle$
S^{\dagger}-gate S-dagger $\sqrt{ } Z^{\dagger}$-gate $S^{\dagger}=\left[\begin{array}{cc} 1 & 0 \\ 0 & -i \end{array}\right]$	qc.sdg(0) $q-s^{+}-$	$\begin{gathered} S^{\dagger} S^{\dagger}=Z \\ S^{\dagger}=P(-\pi / 2) \end{gathered}$	$S^{\dagger}\|+\rangle=-i\|\cup\rangle$	$S^{\dagger}\|-\rangle=\|\cup\rangle$	$S^{\dagger}\|U\rangle=\|+\rangle$	$S^{\dagger}\|\cup\rangle=i\|-\rangle$	$S^{\dagger}\|0\rangle=\|0\rangle$	$S^{\dagger}\|1\rangle=-i\|1\rangle$
U-gate $U(\theta, \phi, \lambda)=\left[\begin{array}{cc} \cos \left(\frac{\theta}{2}\right) & -e^{i \lambda} \sin \left(\frac{\theta}{2}\right) \\ e^{i \phi} \sin \left(\frac{\theta}{2}\right) & e^{i(\phi+\lambda)} \cos \left(\frac{\theta}{2}\right) \end{array}\right]$	qc.u(pi/2,0,pi,0)	most general of all single-qubit quantum gates	$U\left(\frac{\pi}{2}, 0, \pi\right)\|+\rangle=\|0\rangle$	$U\left(\frac{\pi}{2}, 0, \pi\right)\|-\rangle=\|1\rangle$	$U\left(\frac{\pi}{2}, 0, \pi\right)\|\cup\rangle=\sqrt{-i}\|\cup\rangle$	$U\left(\frac{\pi}{2}, 0, \pi\right)\|\cup\rangle=\sqrt{i}\|\cup\rangle$	$U\left(\frac{\pi}{2}, 0, \pi\right)\|0\rangle=\|+\rangle$	$U\left(\frac{\pi}{2}, 0, \pi\right)\|0\rangle=\|-\rangle$

