
How to get started on Amazon EC2
Created June 2022 by Paul Bodily

Average time for assignment completion: 3-4 hours

The material in this tutorial I first encountered as an undergraduate research assistant in 2007. I wish
I had had a tutorial like this at that time! Knowing the basics of command line, SSH, Linux, Vi, and
Git makes you extremely marketable and should be included on your CV/resume. The tutorial is
designed with sections be completed in order, but also as a quick reference should you need to
come back later. I hope to have created here a resource you can draw back on throughout the
semester and beyond!

Important note: All commands on Linux are case-sensitive. Be sure to pay close attention to
letter casing (i.e., upper- and lower-case) in all of the below instructions, including the
usernames, passwords, folder, and filenames you create. You will risk getting a 0 on the
assignment or having to do it all over if your casing doesn't match what is in this tutorial!

If you experience trouble as you work through these steps, get help! Use Google, post on Discord,
visit the TA during office hours, ask questions in class, or visit with Dr. Bodily during office hours!

Important note: Attention to detail is critical on this assignment. To save you time and to avoid
running into excessive problems, please follow each step in order carefully.

Table of Contents
How to get started on Amazon EC2	
1
Launching a server	
3

Create an AWS account	
3
Sign up for a free tier EC2 web server	
3
Adding a user in the AWS Management Console	
5
Launching a server instance	
6
Checking server usage	
11
Rebooting your server	
12

Configuring a server	
13
Accessing the terminal	
13
SSHing into your EC2 instance as the default user	
13
To reset your server login password	
15

Page of 1 30

Adding user server accounts (with sudo privileges)	
15
Keeping your server up to date	
16
Editing files in the terminal using Vi	
16
SSHing into your EC2 instance with your server account	
16

Getting started on a server	
18
Some basic Linux/Unix terminal commands	
18

Git and GitHub	
20
Installing Git on your server	
20
Setting up and adding to your Git repository	
20
Connecting your Git repo to GitHub	
22
Everyday Git commands	
25

Getting started coding on the server	
26
High-level, low-level, interpreted, and compiled languages	
26
Installing GCC on your server	
27
Installing GDB on your server	
27
Your first assignment: hello_world.c	
28

When the Free Tier period expires	 30

Page of 2 30

Launching a server
Create an AWS account

1. Go to https://portal.aws.amazon.com/billing/signup
2. Input an email address (e.g., your ISU email address), an AWS account name (e.g., first four

letters of your last name followed by first four letters of your first name, all lowercase), and
select "Verify email address"

3. Retrieve the verification code sent to the email you entered in the previous step and use it to
verify your account

4. Select and confirm your "Root user password"
5. Indicate that you plan to use AWS for "Business - for your work, school, or organization" and fill

out your contact information for the account. You can put "Idaho State University" for the
"Organization name". Read and agree to the terms of agreement, and continue to the next
step.

6. Enter credit or debit card information. You will not be charged anything. There will be an
authorization charge of $1 sent to verify that the card is valid, but AWS doesn’t proceed with
the charge, and the charge should disappear within three to five business days. Having a card
on file is in case you exceed the limits of the tier you are signing up for. AWS will make every
effort to notify you before this should happen. The work you will do for this class will not require
you to go over these limits. A common issue is for your bank to reject this charge. In this
case, try a different card and/or contact your bank.

7. Confirm your identity on the next page and complete the security check
Sign up for a free tier EC2 web server

8. Go to https://aws.amazon.com/free/. Select the "12 months free" option.

Page of 3 30

https://portal.aws.amazon.com/billing/signup
https://aws.amazon.com/free/

9. Select the "Amazon EC2" option that gives you 750 hours per month. On the next page select
"Get Started with Amazon EC2".

10. Log in as the root user using the account credentials for your AWS account (created above).

11. Select the "Basic support - Free" support plan and "Complete sign up".

Page of 4 30

Adding a user in the AWS Management Console
Having access to the AWS Management Console will allow you to manage your server and to see
details about the server that are needed to log in to the server. Because I or the TAs will need to log in
to the server (e.g., to grade assignments, to help you resolve issues, etc.), it will be helpful for us to
also have access to these same server management details. Here you will create an AWS
Management Console account for me/the TAs. Note that this account is just for managing the
server, not for logging into or working on your server (we'll create that account in a different
step).

12. Select "Go to the AWS Management Console" (you may want to bookmark this site)
13. In the "Search for services..." search box, type "IAM" and select the "IAM" service

14. In the lefthand menu, select "Users".

Page of 5 30

15. Using the "Add users" button, add a user. The User name should be "bodipaul". The AWS
credential type should be "Password - AWS Management Console access". The "Console
password" can be left as "Autogenerated password". "Require password reset" should be
selected.

16. In "Set permissions", select "Add users to group" and create a group. This group should be
given an appropriate name (e.g., "admins") and be assigned the policy "AdministratorAccess".

17. Go to "Next: Tags". Proceed then to "Next: Review". And select "Create users."
18. On the next page, click "Show" to show the password. Copy and save this password. You

will need to submit it as part of your submission for this assignment.
19. If at any point you need to create, change, or delete an IAM user password, follow the

corresponding instructions on this site: https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_credentials_passwords_admin-change-user.html.

Launching a server instance
Amazon calls its web servers instances, because you can have many of them running in parallel. For
now, you only need one instance. After launching a server instance, that instance will be "running".
The time that an instance is running counts against your 750 hours per month. Note that 31
days is only 744 hours, so as long as you are only ever launch/are running a single instance,
you will never exceed your 750 hours per month that are allotted for the free tier. Here are
instructions on how to launch your server instance.

20. From the "Search for services..." search box, type "EC2" and select the "EC2" service

Page of 6 30

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_admin-change-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_admin-change-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_admin-change-user.html

21. WARNING: Part of launching a server instance is being aware of where that server instance is
physically located. The physical location of the server can impact latency times. For this
reason, some users will launch multiple instances in multiple geographic regions so that users
in those regions have decreased latency. You should take careful note of the region in
which you are operating so that you avoid accidentally launching multiple server
instances in different regions. The region is indicated in the top right of the page next to
your username:

Noting the region in which you launch your server instance is important because by
default the EC2 Management Console view is region-specific. That means if you
launched your instance in "N. Virginia", but the region you are currently looking at in
the Console is "Ohio", you will not see the N. Virginia instance listed. This can
inadvertently lead some users to erroneously assume they have no instances running
and to subsequently launch a second instance. Launching a second instance will
eventually result in you exceeding the limits of the free-tier and being charged for the
extra usage. Be sure the first thing you do each time you log in is to verify the region
which you are viewing. To see all instances across all regions, you can select the "EC2
Global view".

Page of 7 30

22. From the "Resources" pane, select "Instances (running)" (yours will have a "0" next to it)

23. In the upper right corner, select "Launch instances"

24. Give the server a meaningful name (e.g., "Paul Bodily's Web Server")
25. From the "Quick Start" menu select the "Ubuntu" Amazon Machine Image. Note that this

Amazon Machine Image (AMI) is a commonly used acronym that (in our case) will refer to
this Ubuntu installation. (An image is a serialized copy of the entire state of a computer
system.)

26. From the dropdown menu select the Ubuntu Server with SSD Volume type (Free tier eligible-
likely the default will be fine). Be sure that the "64-bit (x86)" Architecture is selected.

Page of 8 30

27. For the "Instance type", select "t2.micro", which is "Free tier eligible".

28. For the "Key pair (login)", select "Create new key pair". The Key pair name should be
something descriptive (e.g., "paul_macbook") . It should be RSA type. If the machine you are 1

using runs Linux or MacOS, the "Private key file format" will be ".pem"; if you are running
Windows, then select ".ppk". Selecting "Create key pair" will download a file containing your
key pair (which, should you be interested, can be visualized in a basic text editor). You will
need this key-pair file later so don't lose it.

29. Under "Configure storage", set it to "1x 30 GiB gp2"

30. Under "Advanced details", set "Shutdown behavior" to "Stop", and set "Termination protection"
to "Enable".

WARNING: The purpose of these settings is to help you avoid accidentally wiping all of the
data from your server. A "stopped" server instance allows the data and configuration of the
instance to be preserved even though the server is not running (i.e., accessible for public
users). Note that a "stopped" instance still counts against your 750-hour quota.

When the time comes that you want eliminate the server and everything on the server, you will
need to "Terminate" the server. Because you have enabled "Termination protection," you will
see that the option to "Terminate" is disabled in the standard menus. To terminate, simply right
click on the server and adjust settings to disable "Termination protection" prior to then

 For this and all other filenames, I strongly recommend that you avoid filenames that include spaces or 1

punctuation marks other than underscore or dash characters. Because command lines use spaces to delimit
arguments, it can get messy trying to pass filenames that contain spaces as arguments. If you do encounter
filenames with spaces or weird punctuation, tab-completion is your friend and will automatically fill in the
appropriate escape character sequences to match these files.

Page of 9 30

Terminating the instance. When you "terminate" an instance, it ceases to count against
your usage quota. Termination will wipe everything from your server instance.

31. If you receive notification that underlying hardware is degraded (rare), follow the instructions
here: https://aws.amazon.com/premiumsupport/knowledge-center/ec2-linux-degraded-
hardware/ 

Page of 10 30

https://aws.amazon.com/premiumsupport/knowledge-center/ec2-linux-degraded-hardware/
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-linux-degraded-hardware/
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-linux-degraded-hardware/

32. Hit "Launch Instance" in the righthand "Summary" panel

Checking server usage
Periodically you can (and should) check that your forecasted usage is below what is allotted for your
free tier. The usage and forecasted usage are for the current month.

33. From the "Search for services..." search box, type "Billing" and select the "Billing" service.
34. In the lefthand menu, select "Free Tier".
35. Check that the forecasted usage is below 100% of allotment. (Close to 100% is fine, as long as

it is below.) 

Page of 11 30

Rebooting your server
If at any point you have trouble accessing your server, or you get an email or message indicating that
you need to reboot your server, here are instructions on how to reboot your server.

36. From the "Search for services..." search box, type "EC2" and select the "EC2" service.
37. Ensuring that you've selected the correct region in the upper right corner, select "Instances

(running)" in the Resources menu.
38. Right-click on the instance you want to reboot and select "Reboot instance".

Page of 12 30

Configuring a server
Accessing the terminal
Now that you have launched a server instance, your server is live! You will access your server
through the terminal. The terminal, also known as the command line interface (CLI) or console, is
a powerful textual interface that allows the user to accomplish and automate tasks on a computer
(and/or on a remote computer) without the use of a graphical user interface. Every computer has
one, but they are called and accessed differently depending on which operating system (OS) you are
using. You will use the terminal for various tasks related to your server.

39. In Windows: Click Start and search for "Command Prompt." Alternatively, you can also access
the command prompt by pressing Ctrl + r on your keyboard, type "cmd" and then click OK.

40. In MacOS: Open Launchpad and search for "terminal". Alternatively, you can access the
terminal by pressing ⌘ + space on your keyboard and searching for "terminal."

41. In Linux: Depending on which interface you use (e.g. GNOME, KDE, Xfce), the terminal will
be accessed differently. We recommend you check Ubuntu's Using the Terminal page for the
various ways to access the terminal.

42. Your local computer will likely have an SSH client installed by default. You can verify this by
typing ssh at the command line and hitting enter. If your computer doesn't recognize the
command, you need to install an SSH client (PuTTY and OpenSSH are common ones).

43. If you're using MacOS or Linux, take this moment to set permissions of your private key file for
later use. You can do this by running the command

chmod 400 ~/Downloads/my-key-pair.pem

where my-key-pair.pem should be the name of your key-pair file. Note that this assumes
that your key-pair file is still in your Downloads folder. Press enter to run the command.

SSHing into your EC2 instance as the default user
SSH, also known as Secure Shell or Secure Socket Shell, is a network protocol that gives users,
particularly system administrators, a secure way to access a computer over an unsecured network.
Initially your server has only one server account (note the server account is distinct from the AWS
server management account created above). This default server account has the default user
name ubuntu since that is the AMI that was used to launch your instance. In your career as a
programmer, you will rarely interact with a server as the default user, so the only thing you will do as
the default user is to set up other server accounts (one for you and one for me). Setting up these
other accounts requires first logging in (i.e., "SSHing" in) with the default account. This is frequently
the step where students run into the most issues. If you run into errors, try Google, try
Discord, try the TAs or the professor, you can even try reaching out to Amazon. Share your
successful strategies on the course discord. Sometimes simply rebooting the instance (see
section above on rebooting) can work, or terminating the instance and launching a new one.

44. From the "Instances" menu (accessible from the EC2 menu), select the instance that you just
launched

Page of 13 30

https://help.ubuntu.com/community/UsingTheTerminal?action=show&redirect=BasicCommands

45. The instance summary will provide you with some important data. A full rundown of what is
shown is described here: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
connection-prereqs.html. For now, you will need the IP address listed under Public IPv4 DNS.
Stopping or rebooting your instance can cause your IPv4 address sometimes to change, so if
you at any point find yourself unable to log in, double check your IPv4 address.

46. If running MacOS or Linux, in your terminal, log into your server instance as the default user
'ubuntu' by running the following command:

ssh -i ~/Downloads/my-key-pair.pem ubuntu@12.34.56.78

where my-key-pair.pem should be replaced with the path to your key-pair file, and
12.34.56.78 should be replaced with your Public IPv4 DNS address from the previous step.
If you did not set permissions for your key-pair file, go back to step 43 that explains how to do
this.

If running Windows, you need to download and install PuTTY (https://
www.chiark.greenend.org.uk/~sgtatham/putty/). Launch PuTTY, and enter your instance's
Public IPv4 DNS as the IP address. In the lefthand menu, navigate to Connection/SSH/Auth/
Credentials. Click Browse next to private key access and select the .ppk file containing your
key. Finally, click Open. When prompted for a username, log in as the default user 'ubuntu'.
More information about connecting to your Linux instance from Windows can be found here:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html.

47. You will next see a response like the following:

The authenticity of host 'ec2-198-51-100-1.compute-1.amazonaws.com
(198-51-100-1)' can't be established.
ECDSA key fingerprint is l4UB/neBad9tvkgJf1QZWxheQmR59WgrgzEimCG6kZY.
Are you sure you want to continue connecting (yes/no)?

Enter yes. You will see a response like:

Warning: Permanently added 'ec2-198-51-100-1.compute-1.amazonaws.com'
(ECDSA) to the list of known hosts

You will then see a series of login messages and a command prompt. Congratulations, you are
logged in as the default user.

Page of 14 30

[instance ID]

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connection-prereqs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connection-prereqs.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html

To reset your server login password
48. If you ever need to reset a password for an account, you can always log back in as the default

user following the steps in the previous section.

Adding user server accounts (with sudo privileges)
In your career as a programmer, you will rarely interact with a server as the default user, so the only
thing you will do as the default user is to set up two other server accounts (one for you and one for
me), each with sudo privileges. Don't worry about doing updates with the default user; we'll do that
in a minute. The username for me should be bodipaul. Choose your own username for the server
account that you will use for the semester.

49. To add a user bodipaul enter the following command:

sudo adduser bodipaul

When prompted for the password, go ahead and pick a good password for me (I'll change it
later anyway). It won't show the password that you type, but it is recording it. So make sure
you type it in correctly and then just hit enter. If you make a mistake as you're typing, you
should be able to just hold down delete for a few seconds and start again. For the user
information, just press ENTER for the default for all fields. Type 'Y' to indicate all information is
correct. Submit the Public IPv4 DNS address and password via Moodle via the
assignment link.

50. The keyword sudo is short for "super user do". It is typed before commands that may require
super user privileges to perform (like adding users). You will want and need sudo privileges on
the accounts you create for this course. As you saw in the previous step, the default user has
sudo privileges. To add sudo privileges to the bodipaul user, enter the command:

sudo usermod -aG sudo bodipaul

51. Repeat the previous two steps to add an account for yourself with sudo privileges. Be sure to
keep track of your password. You will need to provide your case-sensitive username in
your submission for this assignment.

52. You need to modify a configuration file to allow users to login via SSH. This file is protected by
sudo privileges and thus requires the keyword sudo when editing it. We will use the a
command line text editor called Vi to edit the file. The full command is

sudo vi /etc/ssh/sshd_config

Basic instructions for using Vi to edit a file are in section below. Following those instructions
carefully, edit the file so that PasswordAuthentication (roughly line 57, scroll down with
the arrow keys) is set to yes. Save and quit Vim.

Note to Windows users: if you later have trouble logging in, you may also want to try to change
UsePAM in this file to no on (roughly) line 85.

Page of 15 30

53. Restart the SSH service by running the following command from the commandline:

service ssh restart

54. Prior to logging out, use the instructions in the section below to update your server.
55. This completes all you need to do as the default user. To log out, enter the terminal command:

exit

Keeping your server up to date
When you first log in each time you will see several log in messages. Sometimes those messages will
include a notice that updates are available for your server. You'll likely see a message telling you that
"System restart required". You can ignore this message as it should not affect anything you will need
to do with your servers this semester.

56. To update your server enter the following commands in order, entering your password and the
letter Y at the appropriate prompts to continue:

sudo apt-get update

sudo apt-get upgrade

Editing files in the terminal using Vi
Vi is the universal text editor of Linux. If you know how to use the Vi text editor, you can edit any text
file on any mode and version of Linux. Vim is simply an improved version of Vi, but unlike Vi, Vim is
not universal.

57. Once in Vi, you can use the arrow keys to navigate to where you want to make changes.
58. Type 'i' (for insert) to enter insert mode. Once in insert mode you can add and delete

characters as normal.
59. Once edits are done, press esc to exit insert mode and to return to command mode.
60. In command mode, 'u' is undo.
61. In command mode, type ':wq' (':' is preparatory to issuing commands, w means "write" (i.e.,

save), and q means "quit").
62. You might consider finding a good Vi or Vim shortcut sheet that you like.

SSHing into your EC2 instance with your server account
You used a private key to log in as the default user. You will use the server account you just created
for the rest of the class. You will use a password to log in with this account.

63. If running MacOS or Linux, if my username were bodipaul and my Public IPv4 DNS
address were 12.34.56.78, I would log in by running the following command:

Page of 16 30

ssh bodipaul@12.34.56.78

When prompted, enter your password. You're in!
64. If running Windows, if my username were bodipaul and my Public IPv4 DNS address were

12.34.56.78, I would open PuTTY, and in the Host Name field I would type:

bodipaul@12.34.56.78

Before hitting 'Open', give a name to save the session (e.g., '1337 AWS SSH') and hit
'Save' (this way don't have to reenter the Host Name each time). Common error: make sure
you put both the username and the IP address in the Host Name field as shown above.

65. (Recommended) Note that there are ways to be able to login to your server account without
having to enter your password each time. For MacOS and Linux users, details are here:
https://www.thegeekstuff.com/2008/11/3-steps-to-perform-ssh-login-without-password-using-
ssh-keygen-ssh-copy-id/. Complete all three steps.

For Windows users, there are methods to being able to not have to enter your password
each time you login, but I haven't been able to find a simple one. I suggest just entering your
password each time you log in.

66. (Recommended) For MacOS and Linux users: You can also simplify server login by storing
the login details (i.e., hostname, username) in your user-specific SSH configuration file on your
machine (you cannot store your password this way, however, as storing passwords anywhere
in plain text is not secure, but if you did the previous step, you shouldn't need the password
anyway). Details are here: https://linuxize.com/post/using-the-ssh-config-file/.

For Windows users: if you saved your PuTTY session above, you can just double click on the
saved session in PuTTY each time you login.

Page of 17 30

https://www.thegeekstuff.com/2008/11/3-steps-to-perform-ssh-login-without-password-using-ssh-keygen-ssh-copy-id/
https://www.thegeekstuff.com/2008/11/3-steps-to-perform-ssh-login-without-password-using-ssh-keygen-ssh-copy-id/
https://linuxize.com/post/using-the-ssh-config-file/

Getting started on a server
Some basic Linux/Unix terminal commands
When you first login to your server, all commands you enter are by default executed from your home
directory. Some terminal commands are a single word (executed by hitting enter). Other commands
take additional arguments delimited and separated from the command name using white space.
(There are some fun easter eggs hidden in terminals, too.) These commands are ones you will use
over and over again, so get use to them:

67. pwd - this command (which stands for "print working directory") echoes back to you the path to
the directory you are currently in, which on a freshly opened terminal is the home directory.

68. ls - this command (which stands for "listing") echoes back to you a list of the files and folders
in your current working directory.

69. mkdir temp - the command mkdir creates a new directory named temp. If you run ls again
you will see the directory you just created.

70. cd temp - the command cd (which stands for "change directory") changes your current
working directory to the directory named temp. You can check this by running pwd. If you run
ls again you will see listed the contents of this directory (which, since it is newly created, is
nothing).

71. ls .. - (note that is a lowercase LS not a 1) for any directory ".." is a reference to the
current working directory's parent directory. In this case, the ls command lists the contents
of the parent directory (which if you've been following along will be the contents of the home
directory again).

72. cd .. - What does this do? You guessed it: changes the current working directory to the
current working directory's parent directory.

73. rm temp - the command rm (which stands for "remove") is an extremely dangerous
command in the terminal—so be careful with it! In this case you will get an error warning
because terminals do not let you remove directories without an additional flag. But in general,
the rm command removes whatever files are listed after the command—and they never come
back. There is no "trash" you can pull them back out of—no "undo" feature. So be very
careful.

74. This time type rm -r tem, but before you hit enter, hit the tab key instead. You should see
the line automatically completed for you—terminals have tab completion. As long as what you
have typed so far has a unique match to a file or folder in your current working directory, it will
tab-complete (if not, it will list all the matches it finds so far and wait for you to add more
letters). Tab-complete will save you a lot of time and headaches!

75. rm -r temp - the -r is what we call a flag. It's a boolean switch that, in this case for this
command, tells the rm command to execute recursively, removing not only the directory, but
also recursively removing all of the contents of the directory and any subdirectories.

76. man rm - this command (which stands for "manual") shows a manual entry for the command
provided as an argument (in this case rm). Using the arrow keys, you can scroll up and down
and see what types of flags and arguments can be given to this command and what they do.
man is your friend in learning to use terminal commands effectively (you can also always use
Google). When you're done, use the esc key to get back to the command line.

Page of 18 30

77. Another common command is the mv command. See if you can use man to learn what mv does
and how to use it.

Page of 19 30

Git and GitHub
Installing Git on your server
Git is software for backing up and tracking changes in files. Chances are very high that you will use
Git regularly in your career to coordinate work among programmers collaboratively developing
source code during software development. Git is so common that it has become the norm for
prospective employers to ask to see your Git repository when you apply for a job. We use Git in this
course for 3 primary reasons: 1) to teach you the basics of how to use Git on the commandline; 2) to
allow you to back up your work in case the server crashes (unlikely); and 3) so that you can build up
a portfolio of work you have done to show to future employers.

78. Login to your server. (You can install Git from any directory.)
79. Type sudo apt install git. Because the command is sudo it will require you to enter

your password (for the user account on which you are logged into the server). Simply hit enter
for any prompts that arise during the installation process.

Important: note that this command requires sudo. Installations often do. Some students get in
the habit of always typing sudo before every command. This is a bad habit! Naturally we'll
use sudo a lot early on when getting the server set up, but generally speaking you should not
use sudo. The fact that certain commands require sudo is deliberately to protect you from
screwing things up too badly. If a command requires sudo and you forget to type sudo, it will
fail with a message telling you that it requires sudo, and then you can think carefully about
whether or not you really need to execute that command.

80. Check that git is installed and working by entering the command git --version (most
terminal programs have a -v or --version flag that simply prints back the version of the
program).

Setting up and adding to your Git repository
Git is a tool that facilitates version control. Using Git you create repositories (or 'repos' for short) in
which you will put your files and code. When connected subsequently to GitHub it serves as a
backup of all of the work you've done.

81. Login to your server.
82. Make sure you are in your home directory (i.e., when you type pwd, you should be in /home/

your_user_name). If you aren't there, then typing cd with no arguments should take you
there.

83. Create a directory in your home directory called CS_1337
84. Change directories to be in the directory /home/your_user_name/CS_1337
85. To initialize a git repository in this directory, run the  

 
git init  
 
command. You have now initialized a git repo in the directory CS_1337.

Page of 20 30

86. The first file we're going to add to the repo is a README file. Open up a file in Vi called
README.md using the following command (note that 'md' is short for 'markdown' which allows
for us later to put more than just plain text in our README file):

vi README.md

87. Following the instructions on Editing files in the terminal using vi, enter insert mode and type in
the following (or something similar—you can always change it later):

Your_name's CS 1337 GitHub Repo

This repo contains all of the work and assignments completed for CS
1337, Intro to Computing Systems, taught by Dr. Paul Bodily at Idaho
State University.

Save the file and quit Vi.
88. Once you've added or modified files or folders in a folder containing a git repo, git will notice

that the file exists inside the repo. But, git won't track the file unless you explicitly tell it to. Git
only saves/manages changes to files that it tracks, so we’ll need to send a command to
confirm that yes, we want git to track our new file. Use the git status command to see
which files git knows exist. You will see your README.md file listed under "Untracked files".
What this basically says is, "Hey, we noticed you created a new file called README.md, but
unless you use the 'git add' command we aren't going to do anything with it."

89. Add README.md to your git repo with the command

git add README.md

This command adds the file to a "staging environment"; it keeps track of all of the files whose
changes will be committed when next you command git to commit changes (Surprise! Git
records changes only when explicitly told to). Use the git status command again and you'll
see that README.md is staged to be committed. Note: providing the add command with a
directory name instead of a filename will recursively add all files in that directory. Be careful
with this—you generally may not want to add everything to your repo!

90. When you commit, git stores a username and email with the commit so that it is known who is
responsible for the changes. To set this username and email for all future commits, execute the
following commands with the strings in quotation marks replaced with your information:

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

91. Time for your first commit! Run the command git commit -m "Added README file".
Every commit requires a message be added. This message is more important than you
realize. The message serves as a reminder later on about what precisely differentiates this
version of your repo from the last version. Without the message, you literally have to sift
through the changes to try and remember. Nightmare! Practice now at leaving good commit
messages!

92. Use the git status command again and you'll see that there is now "nothing to commit".
93. IMPORTANT FYI: One should really use branching when using Git. By default, all of your

changes will be made on the main or master branch. In industrial-scale applications, the main
Page of 21 30

branch is the production version of the application. Say you want to make a new feature but
are worried about making changes to the main project while developing the feature. In this
case, Git has functionality to allow you to create a new branch from one of the versions in the
main branch. After you're confident that the branched version works as desired, this can then
be merged into the main branch. You will invariably learn this in future CS classes. For the
sake of keeping things simple, because you will be working solo in this class, and because
we're not concerned about any production version code—we will not do branching. But you
should be aware that it exists and why it exists.

Connecting your Git repo to GitHub
By itself, Git allows you to keep track locally of changes to files in the repository. But the real power
of git is in the ability to back up your repository to the cloud. This is useful for more than just keeping
a copy of your data; it comes in handy when you have multiple programmers working on the same
project and needing to merge their changes. For this class you'll be working solo on all of your
assignments, but all of the commands you'll learn will carry over when you start working on group
projects in other classes. GitHub is an extremely popular online platform for storing and interfacing
with Git repositories. You are welcome to use an existing GitHub account or create a new one for
this class.

94. Create and/or login to your GitHub account.
95. On the GitHub home page, find the "New repository" option under the "+" sign next to your

profile picture in the top right corner of the navbar:

96. After clicking the button, GitHub will ask you to name your repo (e.g., "CS_1337") and provide

a brief description. You are required for this class to select a 'Private' repo so that your
work stays your work.

Page of 22 30

https://github.com/

97. When you're done filling out the information, press the 'Create repository' button to make your
new repo. Follow the '....or push an existing repository from the command line' section, which
contains three commands you will execute on your server. First, on your AWS server, push
your existing repository with the command using the url for the GitHub repo you just created
(note that git commands can be executed from the directory in which you initialized the git repo
or any subdirectory of that directory):

git remote add origin https://github.com/url/to/repo.git

Page of 23 30

Common bug: It is not uncommon for people to put the wrong URL and then when they try to
push to their repo they run into an error. You can test that the URL is correct because it should
open in a browser. If your origin URL is wrong, you can change it using the command

git remote set-url origin https://github.com/url/to/repo.git

98. By default the main branch in Git is named master (to see this execute git branch). On Oct
1, 2020, GitHub (not Git) announced that in an effort to abandon non-inclusive language, that
GitHub "will use main as the default branch, instead of master." It is up to you what language
you wish to use, but this tutorial will use main as the primary branch. To name the primary
branch main, execute the command:

git branch -M main

99. To be able to push your local repo to GitHub, GitHub requires authentication. As of August
2021, this requires the use of personal access tokens (PATs) rather than passwords. Follow
GitHub's instructions for generating a token (classic, NOT fine-grained) as provided here:
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-
personal-access-token#creating-a-personal-access-token-classic. 
 
I would suggest for the Note something like "CS 1337 AWS Server". Every push to GitHub will
require this token, so I would suggest setting an expiration date sometime after the end of
the semester unless you want to be regularly generating new tokens. Under "Select
Scopes", select "repo". Click "Generate token". 
 
Warning: Treat your tokens like passwords and keep them secret. You will need this PAT
every time you push to your server, so save it somewhere. If you lose your PAT or you are
having trouble, you can always delete the token and create a new one.

100.With your AWS Git repo now configured with a remote GitHub repository, you can push the
repo to GitHub with the following command. When prompted, use your PAT in place of your
GitHub password.

git push -u origin main

It will not show the password as you type it, but it is registering your keystrokes. Note: In my
experience, it can be a little tricky to paste in the Windows Putty terminal, which you'll need to
do for this step when entering your PAT as the password (Google is your friend; in my
experience, tapping the trackpad with two fingers works). I suggest practicing pasting into the
terminal before being prompted for the password so you can actually see what is being pasted.

101.Note that you can always view your GitHub repo online at https://github.com/
user_name/repo_name. Since it is private, only those you share the repo with will be able to
see it.

102.We need access to your GitHub repo to be able to check that you are successfully backing up
your work to your repo. To provide us with access, from your repo page, select "Settings", then
under "Access," select "Collaborators." Click the "Add people" button and add the user
"cs1337ta" to your repository. To help us to stay organized on our side, we will ask you for
your github repo URL (of the form https://github.com/user_name/repo_name) in the
submission for this assignment.

Page of 24 30

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token#creating-a-personal-access-token-classic
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token#creating-a-personal-access-token-classic

Everyday Git commands
A common issue with using Git is that the version of the repo on your local system gets out of sync
with the version of the repo that is in the cloud or that others are using. For this reason it is important
to always follow a specific order of instructions in your everyday usage of Git (note that with the
add and commit commands you will need to add additional parameters):

103.Stash your local changes:
git stash

104.Update the branch to the latest code
git pull -u origin main

105.Merge your local changes into the latest code:
git stash apply

106.Add, commit and push your changes
git add [subdirectory or filenames with changes to commit]
git status
git commit -m "Helpful message describing updates"
git push -u origin main

Note that 1) adding a directory automatically adds everything in that directory; 2) adding is
required for any file with changes since the previous commit; 3) issue these commands from
the directory containing subdirectory or files with changes to commit; 4) I assume that main is
the name of your primary branch, and you may need to change that last command if yours is
something different.

In this class, since you're working solo, you should never have to merge local changes into the latest
code (because local changes should always be the latest code). But it is a good habit to get into to
always stash and pull before you add, commit, and push so that when you begin working with
others that you don't try to push your changes to a version of the code that is more up-to-date than
the one you were working from. This can lead to overwriting changes that others have made, and
although it can be fixed, it can take a lot of time and is no fun!! You should always start a coding
session by pulling the latest code and you should always end a coding session with the above
sequence of commands. 

Page of 25 30

Getting started coding on the server
High-level, low-level, interpreted, and compiled languages
One of the objectives of this course is for you to understand the difference between a
compiled language and an interpreted language. Every programmer is expected to know this
difference, so here it is:

In computer science we talk about high-level languages and low-level languages. Low-level
languages are sometimes referred to as machine languages or assembly languages. Machine
language is the encoding of instructions in binary (0's and 1's) so that they can be directly executed
by the computer. Assembly language uses a slightly easier format to refer to the low level
instructions. Loosely speaking, computers can only execute programs written in low-level languages.
To be exact, computers can actually only execute programs written in machine language. Thus,
programs written in a high-level language (and even those in assembly language) have to be
processed before they can run. This extra processing takes some time, which is a small disadvantage
of high-level languages. However, the advantages to high-level languages are enormous.

You have previously learned Python (a high-level language). In this course you will learn C (another
high-level language). As the purpose of this course is to crack open the proverbial hood and look
inside, we will also look at low-level languages like machine and assembly languages with the
express purpose of helping you understand how they work.

Advantages of high-level languages (this will be on the midterm)

1. It is much easier to program in a high-level language. Programs written in a high-level
language take less time to write, they are shorter and easier to read, and they are more
likely to be correct.

2. High-level languages are portable, meaning that they can run on different kinds of
computers with few or no modifications. Low-level programs can run on only one kind of
computer and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages. Low-level
languages are used only for a few specialized applications.

Two ways to process high-level programs (this will also be on the midterm)

Two kinds of programs process high-level languages into low-level languages: interpreters
and compilers. High-level languages are usually categorized as either interpreted languages or
compiled languages depending on which process is most commonly used.

1. An interpreter reads a high-level program and executes it, meaning that it does what the
program says. It processes the program a little at a time, alternately reading lines and
performing computations.

Page of 26 30

2. A compiler reads the program and translates it completely before the program starts
running. In this case, the high-level program is called the source code, and the translated
program is called the object code or the executable. Once a program is compiled, you can
execute it repeatedly without further translation.

Many modern languages use both processes. They are first compiled into a lower level language,
called byte code, and then interpreted by a program called a virtual machine. Python uses both
processes, but because of the way programmers interact with it, it is usually considered an
interpreted language. C is only a compiled language.

In this course, we'll essentially start with C and work our way backward to assembly and then to
machine code. I hope this excites you. By the end of this course you will have uncovered the magic
and mystery of how a computer works!

Installing GCC on your server
GCC stands for GNU Compiler Collections which is used to compile mainly programs in the C and
C++ languages. Since we're learning C this semester, you'll need to have GCC installed.

107.Login to your server. (You can install the C compiler from any directory.)
108.Type sudo apt install gcc. Because the command is sudo it will require you to enter

your password (for the user account on which you are logged into the server). Simply hit enter
for any prompts that arise during the installation process.

109.Check that gcc is installed and working by entering the command gcc -v.

Installing GDB on your server
GDB is the GNU Debugger that runs on Unix-like systems and works for many programming
languages. We will use it extensively later on in the semester when we learn assembly, but I
encourage you to learn and use it in Labs 2 and 3 to help you debug your C programs.

110. Login to your server. (You can install gdb from any directory.)

Page of 27 30

111. Type sudo apt install gdb. Because the command is sudo it will require you to enter
your password (for the user account on which you are logged into the server). Simply hit enter
for any prompts that arise during the installation process.

112. Check that gdb is installed and working by entering the command gdb -v.

Your first assignment: hello_world.c
113. Login to your server.
114. In your CS_1337 directory, create a directory called assignments
115. Change directories to be in the directory /home/your_user_name/CS_1337/

assignments
116. Create a directory called lab_1
117. Change directories to be in the directory /home/your_user_name/CS_1337/

assignments/lab_1
118. Each programming language has conventions, i.e., norms that are not mandatory for programs

to run, but styles which programmers who use that language generally expect will be followed.
Often times those conventions are merely historical, but sometimes they have good practical
motivations. You should always follow the conventions for the language you are using as
regards filenames, commenting, variable and function names, etc. In the C language, it is
convention that filenames are to be all lowercase with underscores used to separate
words. The suffix for a C source file is ".c". Following this pattern open up a file in vi called
hello_world.c using the following command:

vi hello_world.c

119. Following the instructions on Editing files in the terminal using Vi, enter insert mode and type in
the Hello World program as found here: https://www.tutorialspoint.com/cprogramming/
index.htm. Save the file and quit Vi.

120.Type ls to get a directory listing. Do you see your source file?
121.Compile your source code with the command gcc hello_world.c
122.Type ls to get a directory listing. Do you see your binary object file?
123. Just as ".." is a shortcut for a directory's parent directory, "." is a shortcut for a directory itself.

Why would we need this? Some commands can be executed from anywhere in the file
directory structure. When we need to distinguish that we're referring to a command or file in the
current directory, we use this. Execute your binary object file with the command  
 
./a.out

You'll learn later how to specify the name for your object file.

124.Don't forget to add, commit, and push your changes! Navigate back to your CS_1337 directory
on your server and let's add your assignments directory (and everything in it) to your
repository: 
 
git add assignments

Let's check what got added. 
 
git status

Page of 28 30

https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm

You should see that it has recursively added your lab_1 directory and its contents. Now we
need to commit these changes. 
 
git commit -m "Added Lab 1 Hello World in C"

Now push to to GitHub! 
 
git push -u origin main

Again, this last command assumes your primary branch is called main. You'll need again to
type in your GitHub username and your PAT. You should now be able to see your Lab 1 code
in your GitHub repo in a web browser.

A quick GDB tutorial

125.Before we finish, let's see how we use gdb to debug programs in C.
1. To run C programs in gdb requires compiling with the -g flag. Recompile your

hello_world.c with the -g flag with the command  
 
gcc -g hello_world.c

2. Next, launch gdb on your binary object file with the command  
 
gdb a.out

3. In gdb, you'll see the program has its own command line. Set a breakpoint at line 5 (in your
hello_world.c file) with the command  
 
break 5

4. Now run the program with the command run.
5. Our hello_world.c program doesn't have any variables, so there's not much to look at,

but take a minute to visit https://u.osu.edu/cstutorials/2018/09/28/how-to-debug-c-program-
using-gdb-in-6-simple-steps/ to see how, in more complex programs, you would print
variables. Use this tutorial to figure out how to step your way (or continue) through the rest
of your hello_world.c program.

126.For now that's all! You don't need to do anything else. The TA will login to your server using the
credentials you sent me and check that you have done the assignment correctly. Nice job!

Page of 29 30

https://u.osu.edu/cstutorials/2018/09/28/how-to-debug-c-program-using-gdb-in-6-simple-steps/
https://u.osu.edu/cstutorials/2018/09/28/how-to-debug-c-program-using-gdb-in-6-simple-steps/
https://u.osu.edu/cstutorials/2018/09/28/how-to-debug-c-program-using-gdb-in-6-simple-steps/

When the Free Tier period expires
When the 12-month Free Tier period with AWS is about to expire you should receive an email
notifying you. Assuming you have terminated all active resources, you will not be billed anything.
You can optionally close your account. A succinct summary of options and instructions can be found
here: https://aws.amazon.com/premiumsupport/knowledge-center/free-tier-expiring/.

When the time comes that you want eliminate the server and everything on the server, you will need
to "Terminate" the server. Because you have enabled "Termination protection," you will see that the
option to "Terminate" is disabled in the standard menus. To terminate, simply right click on the server
and adjust settings to disable "Termination protection" prior to then Terminating the instance.

Page of 30 30

https://aws.amazon.com/premiumsupport/knowledge-center/free-tier-expiring/

