Chapter 3
System Performance and Models

José M. Garrido
Richard Schlesinger
Kenneth Hoganson
Systems and Models

• A system is the part of the real world under study. Composed of a set of entities interacting among themselves and with the environment.

• A model is an abstract representation of a system.

• The system behavior is dependent on the input data and actions from the environment.
Abstraction

• The most important concept in analysis and design
• A high-level description of a collection of objects
• Only the relevant properties and features of the objects are included.
A system has:

- Structure
- Behavior

The model of a system is simpler than the real system in its structure and behavior. But it should be equivalent to the system.
Using Models

A user can:

• Manipulate the model by supplying it with a set of inputs
• Observe its behavior or output
• Predict the behavior of the real system by analyzing the behavior of the model.
Behavior of a Model

Depends on:
• The passage of time
• Input data
• Events generated by the environment
Types of Model

The most general categories of models are:
• Physical models (scale models)
• Graphical models
• Mathematical models.

Mathematical models are the most flexible ones and are the ones studied here.
Mathematical Models

• **Analytic**, the solution is a set of expressions that define the behavior of the model.

• **Numeric**, mathematical techniques are used to derive values for the model behavior within given intervals.

• Deterministic and stochastic models are solved with numerical techniques.
Other Categories of Models

Models are further categorized as:

• **Deterministic** - models that display a completely predictable behavior (with 100% certainty)

• **Stochastic** - models that display some level of uncertainty in their behavior. This random behavior is implemented with random variables.
Stochastic Models

• A stochastic model is one which includes some uncertainty in its behavior.
• One or more attributes (implemented as random variables) change value according to some probability distribution.
• Example of random variables in the simple batch OS model:
 – Inter-arrival time of jobs
 – CPU service time of jobs
Model of a Simple Batch System
Random Variables

• The values of most workload parameters change randomly, and are represented by a probability distribution.

• For example, in a model of a computer system, the inter-arrival intervals of jobs usually follow an exponential distribution. Other probability distributions that are used in the models discussed in this book are: normal, uniform, and Poisson.

• In the simulation models considered, most workload parameters are implemented as random variables.
Simulation Models

• A simulation model is a mathematical model implemented with a general-purpose programming language, or a simulation language.

• A simulation run is an experiment carried out for some observation period and with the simulation model to study the behavior of the model.
Continuous and Discrete Models

- **Continuous models** change their state continuously with time. Mathematical notation is used to completely define the behavior. For example, the free-falling object.

- **Discrete models** only change their state at discrete instants. For example, arrival of a job in the Simple batch OS model.
Discrete Simulation

- Event approach
- Activity approach
- Process interaction approach
 - Psim3 and PsimJ uses the full power of Object orientation and process interaction simulation
 - GPSS has limited support
 - Simscript has limited support
 - Modsim III has good support
Simulation Results

For every simulation run there are two types of output:

• Trace - sequence of events that occur during the simulation period
• Performance measures - summary statistics about the simulation.
The Process Interaction Approach

- A simulation model using this approach consists of a description of how different active entities are going to interact among themselves, as time passes.

- A simulation run consists of creating and starting the processes interacting among themselves, synchronizing and using resources.
Advantages of the Process Style of Simulation

• Compatible with the Object-Oriented approach to modeling and programming, every process is an active object.

• Suitable for modeling large and complex systems.

• C++, Java and/or a higher-level object-oriented simulation language are used to implement the models.
Studying Operating Systems

• An operating system is a large and complex software system
• To study the structure and behavior of an OS is a very complicated task
• Modeling and simulation are used to study the different components and various aspects of an operating system.
Performance Measures

• Measures that indicate how well (or bad) the system is being studied carrying out its functions, with respect to some aspects

• In studying a system, usually several performance measures are necessary.
Approaches for Studying Performance

• Measurements on the real system
• Simulation models
• Analytical models
Performance: External Goals

• Goals that can be measured without looking at the internals of a system

• Examples
 – Maximize Work Performed (Throughput)
 – Minimize Response Time
 – Fairness
 – Scheduling processes

• Goals often conflict
Performance: Internal Goals

• Performance Goals for sub-systems that are internal to the computer(s)

• Examples
 – Maximize CPU Utilization
 • % time CPU is busy
 – Maximize Disk Utilization
 • % time Disk is busy
 – Minimize Disk Access Time
 • Time it takes to perform a disk request
Performance Study

• Define a set of relevant objectives and goals
• Decide on the following:
 – The performance metrics
 – The system parameters
 – The system factors
 – The system workloads
Workload on a System

• The performance measures depend on the current workload of the system.
• The workload for a system can be characterized by another series of measures, which are made on the input to the system.
• Errors in characterizing the workload may have serious consequences.
Workload Parameters

- Inter-arrival time
- Task size
- I/O request rate
- I/O service rate
- Memory request
System Parameters

• System memory
• Processor speed
• Number and type of processors
• Degree of multi-programming
• Length of time slice
• Number and type of I/O ports
Arrival Interval & Rate

- **Arrival Interval** is the time between 2 resource requests arriving
- **Arrival Rate** = $1 / \text{Arrival Interval}$
 - How often requests for a resource arrive
 - Denoted by λ
Service Time & Rate

- **Service Time** is the time to actually perform a request
 - e.g. 500 Msec / request
- **Service Rate** = 1 / Service Time
 - Denoted by μ
 - e.g. 2 requests / second
Arrival Rate vs Service Rate

• Arrival Rate < Service Rate
 – Resource can handle requests
 – Queuing Time will be small
 – If Arrival Rate significantly less
 • Resource may be under-utilized
Arrival Rate vs Service Rate

- Arrival Rate = Service Rate
 - Resource fully utilized
 - Resource can generally handle requests
 - But...Requests will often be queued
Arrival Rate vs Service Rate

• Arrival Rate > Service Rate
 – Resource unable to handle all requests
 – Queuing Time may be large
 – If difference is large
 • Resource will be over-utilized
Arrival Rate vs Service Rate

• Both rates will change from one instant to another

• Queuing system & resource scheduling handle momentary imbalances

• Long-term imbalances indicate a system with a major resource utilization problem
Service Time

- Is the Service Time for a given request always the same?
Service Time

- Service Time for a given request can vary
 - A request to read data from a certain part of a disk will not always take the same amount of time.
- For some resources, a request’s Service Time may be affected by the previous requests that have been executed
Relevant Performance Measures

• Throughput
• Capacity
• Response time
• Utilization
• Reliability
• Speedup
• Backlog
Meaning of Performance Measures

• The average number of jobs in the system
• The average number of jobs in the queue(s) (i.e., that are waiting)
• The average time that a job spends in the system
• The average time that a job spends in the queue(s)
• The CPU utilization
• Throughput - the total number of jobs serviced.
System Capacity

• The capacity of a system is determined by its maximum performance
• The nominal capacity of a system is given by the maximum achievable throughput under ideal conditions
• The usable capacity is the maximum throughput achievable under specified constraints.
Bottleneck

• The computer system reaches capacity when one or more of its servers or resources reach a utilization close to 100%.

• The bottleneck of the system will be localized in the server or resource with a utilization close to 100%, while the other servers and resources each have utilization significantly below 100%.
Modeling Bottleneck

The bottleneck of the computer system described here can be localized at the processor, the queue, or the memory.

– The queue may become full (reaches capacity) very often as the processor utilization increases.
– The memory capacity may also be used at capacity (100%).
– Thus, in any of the three cases, the processor, the queue, or the memory will need to be replaced or increased in capacity.
Efficiency and Reliability

• The efficiency of a system is the ratio usable capacity to nominal capacity

• The reliability of a system is measured by the probability of errors. Also defined as the mean time between errors.

• Availability is the fraction of time that the system is available for user requests, also called the system uptime.
A More Complete Model of a Computer System