1. [50 points] Given a modulating signal \(m(t) = 4 \cos(200\pi t) \) and a carrier signal \(\cos(2000\pi t) \),
 a. Hand-sketch the spectrum of \(m(t) \).
 b. Hand-sketch the spectrum of the DSB modulated signal \(m(t)\cos(2000\pi t) \).
 c. Hand-sketch the spectrum of the demodulated signal with the given carrier.
 (Hint: Follow the procedure covered in our lectures and discussions on the AM process.)

2. [50 points] Given \(m(t) = \cos(80\pi t) + \cos(120\pi t) \), \(t \in [-0.1,+0.1] \). Using MATLAB, perform the following:
 a. Plot the amplitude spectrum of \(m(t) \) and the modulated DSB signal \(S_{DSB}(t) = m(t)\cos(400\pi t) \).
 b. At the receiver, demodulate \(S_{DSB}(t) \) with the local carrier \(\cos(400\pi t) \). Design an LPF to suppress the carrier. Then, plot the amplitude spectrum of \(S_{DSB}(t) \) BEFORE and AFTER the LPF.
 (Hint: Some helpful MATLAB functions are \texttt{fft, fftshift, fir1, filter}, among others.)