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Abstract—Despite continued research, phishing email attacks
are on the rise and there is a lack of rich curated datasets
for training and testing email filtering techniques. To address
this, we produce and release seven curated datasets with 203,176
email instances for use with machine learning (ML) to distinguish
phishing emails from legitimate ones. We create these datasets
by meticulously curating phishing and legitimate emails from
different repositories. Then to demonstrate that our curated
datasets are suitable for the purpose, we conduct a quantitative
analysis for evaluating the performance of five ML algorithms.
We also analyze the significance and impact of different features
within these curated datasets on those ML algorithms. These
curated datasets along with the findings from the quantitative
analysis will advance the development of a robust defense against
phishing attacks.

Index Terms—Phishing email, data curation, natural language
processing, machine learning, quantitative analysis, detection

I. INTRODUCTION

For several decades email communication has been an
integral part of both professional and personal life. However,
this has also made it a prime target for phishing attacks,
which pose significant security risks. Phishing email attacks
involve cybercriminals creating deceptive emails that mimic
legitimate correspondence to trick unsuspecting users into
revealing sensitive information. These tactics can lead to
data breaches and various malicious activities. Surprisingly,
it is not just common individuals who are susceptible; even
individuals with advanced education can fall victim to these
schemes [1]. Shockingly, it is estimated that around 91%
of hacking attempts start with a phishing email [2], and an
astonishing 3.4 billion phishing emails are sent daily [3].

This paper addresses the growing concern of phishing
attacks, which are becoming more frequent and sophisticated.
In 2023 alone, nearly 6 billion security breaches occurred, with
phishing attacks occurring at a rate of approximately one every
11 seconds [3]. Despite technological advancements, phishing
remains a significant threat, with cybercriminals continuously
devising new scams. For instance, Gmail’s filters intercept
millions of phishing emails, with a significant portion of them
being new and previously unseen scams [4]. These alarming
statistics underscore the pressing need for more effective and
robust methods of detecting phishing attempts.

In light of this critical necessity, phishing attacks have
been a subject of extensive research [5]–[8]. A significant
challenge in this area of study is the scarcity of real-life,

diverse, well-curated, rich datasets [9]. This piqued our interest
to take a thorough look into the suitability of the potential
email repositories/datasets for phishing email detection. A key
realization from this investigation is that existing email reposi-
tories/datasets, while potentially valuable, are not immediately
usable due to several reasons. Some repositories include raw
emails which must be first curated before those can be
fed to machine learning (ML) algorithms. Some emails are
encoded/encrypted, which need to be decoded/decrypted first;
some are HTML-formatted, from which plain-text content
must be extracted first, some emails are written in languages
other than emails while some come with empty bodies, which
must be filtered before ML algorithms can be applied. Above
all, curation with extraction of features such as URLs is
essential before they become ready for ML algorithms.

We, therefore, create and publicly release seven phishing
email datasets meticulously curated to make them ready for
the application of ML algorithms. These datasets include
collections of phishing and legitimate samples of curated
emails representing real-world emails ranging from personal
to corporate communications across different times in history.
We also recognize that for the pragmatic implementation and
adoption of ML-based solutions for phishing email detection,
it is of the utmost importance to identify the characteristics
and attributes of email communications that contribute most
to the distinction of phishing emails from legitimate ones.
Thus, we also apply five prominent ML algorithms on the
datasets, first, to verify and demonstrate the suitability of our
curated datasets in ML applications, and second, to identify
the most influential email features that impact most on the ML
algorithms’ classification of phishing and non-phishing emails.

Major Contributions: To be clear and specific, we reiterate
the two major contributions of this work as enumerated below.

• We release a collection of seven datasets [10], [11], each
with a balanced collection of phishing and legitimate
emails, meticulously curated and ready for immediate
application of ML algorithms or similar analyses.

• Applying five prominent ML algorithms on the datasets,
we demonstrate the datasets’ suitability and readiness for
ML applications, while we also derive insights into the
impacts of different email features on the ML algorithms’
decision-making. These insights are essential for the
development of sophisticated and targeted approaches for
the purpose.
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The rest of the paper is organized as follows. In Section II,
we describe our methodology for the curation and creation
of seven datasets. Section III describes the resultant curated
datasets. In Section IV, we present a quantitative analysis,
where we apply five ML algorithms to demonstrate the suit-
ability of our datasets and to examine feature importance.
Section V addresses the limitations of this study and our efforts
to minimize them. In Section VI, we discuss the work in the
literature related to ours. Finally, Section VII concludes the
paper with some future research directions.

II. CURATION AND CREATION OF DATASETS

As portrayed in Figure 1, this work is carried out in two
phases. In phase-1, we process and curate the collections of
emails to produce seven datasets. In phase-2, we apply five ML
algorithms to the datasets to demonstrate their suitability and
to derive insights into feature importance. The procedural steps
involved in each of the phases are summarized in Figure 1,
and described in Section II-B and Section IV.

A. Sources of Email Collections

As mentioned before, we collect emails from several
sources. The Ling-Spam (Ling) [12] repository includes emails
from the year 2000, representing early email communication.
These emails specifically focused on topics of interest to
linguists. The Enron [13] corpus includes emails dated back to
the year 2006. The Apache SpamAssassin repository (Assas-
sin) [14] includes emails spanning over multiple years (2002 -
2006). The TREC public corpus periodically released in 2005
(TREC-05) [15], 2006 (TREC-06) [16], and 2007 (TREC-
07) [17] include various email communications in consecutive
three years. The CEAS 2008 Challenge Lab Evaluation Corpus
(CEAS-08) [18] includes emails dating back to the year 2008.

B. Processing for Curation

Although the emails from all the aforementioned sources
are distinguished into phishing or legitimate, they are mostly
raw and need varied levels of processing to be prepared for
ML applications. Hence we further process and curate them
to create our datasets. The activities involved in data curation
are summarized as phase-1 in Figure 1 and elaborated below.

1) Decoding: The emails in all the repositories, except
for Ling, contain encoded/encrypted emails that need to be
decoded/decrypted first. To decode these, we first parse the
raw content to identify the type of encoding, as specified in the
email headers. We then apply different decoding techniques for
different types of encoded data. For example, the process of
decoding Base64 encoded data involves reversing the Base64
encoding process. Then, we address different character sets,
as guided by the Content-Type header. This ensures that the
decoded byte sequence is accurately translated into a readable
string. This overall decoding method transforms the encoded
segments of an email back into their original, comprehensible
format, which is crucial for their continuous integration and
analysis in our research. Here, we utilize the Python email
library [19] to assist in the decoding of encoded emails.

2) Extraction of Plain Text: We observe that within all
repositories, with the exception of Ling, there is a mix of
HTML-formatted emails and plain text emails. In order to
maintain consistency and ensure a dataset feedable to ML
algorithms, we extract plain text from the HTML-formatted
emails. At first, we retain the content within certain format-
ting tags, such as <strong> and <p>, removing only the
tags themselves to preserve essential data without the visual
formatting. Then, consecutive newlines are replaced with
single spaces to enhance machine readability by eliminating
unnecessary breaks. The extracted plain text allows more
straightforward and more consistent data processing, building
a robust foundation for subsequent phases of the work.

3) Duplicate Removal: To identify duplicate emails, we
analyze the ‘Body’ content of each email, which is the crucial
part of an email. If two emails share identical ‘Body’ content,
we classify them as duplicates. Then, we remove the redundant
emails by keeping single instance from each duplicate group.

4) Discrepancy Handling: Within the selected repositories,
we observe that certain emails have empty email bodies. We
remove such emails from our study. Additionally, we keep
only emails written in English to maintain consistency.

5) Data Cleansing: To improve the integrity and quality of
the dataset, we apply data cleansing. This involves removing
stop words, such as ‘and’, ‘the’, and ‘is’, from each email.
This step is crucial as it minimizes noise in the dataset.

6) Vectorization: The email data must be transformed into
numerical vector representations for feeding to ML algorithms.
To accomplish this transformation, we utilize term frequency-
inverse document frequency (TF-IDF) technique from natural
language processing (NLP) which is the most widely used
statistical method [20]–[22]. This method involves multiplying
term frequency (TF) of a word by its inverse document
frequency (IDF). Term frequency signifies how frequently a
word appears in a particular document, while inverse document
frequency denotes the prevalence of the word across the entire
document collection. The ‘Urls’ attribute is transformed into a
binary feature: a value of 1 indicates the presence of URL(s)
in the email body, whereas 0 indicates their absence.

III. RESULTANT CURATED DATASETS

Upon completion of data curation as described above, we
obtain the curated datasets corresponding to the seven original
repositories and we name each dataset after the name of
the original repository it is derived from. Table I provides
a summary of these seven curated datasets we produce. The
topmost row in this table identifies each of the datasets.

For each dataset, the second, third, and fourth row from
the top respectively include the number of email instances
processed at decoding, duplicate removal, and discrepancy
handling. The remaining rows in Table I present an overview
of the resultant datasets after the completion of data cura-
tion. Thus the subsequent row include the total number of
curated emails, the number of legitimate emails, the number
of scam/phishing emails, the ratio of legitimate to scam emails
(Legit:Scam), and the features available in each dataset.
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Fig. 1. Procedural steps at different phases in our work

For example, we obtain 30,494 emails upon completion
of decoding Enron dataset, from which 724 duplicates are
removed, and upon handling discrepancies in three emails in
the remaining, we obtain a total of 29,767 curated emails.
15,791 of these curated emails are legitimate, while the rest
13,976 are phishing emails resulting in a legit:scam ratio of
53:47. As shown in the bottom row, the curated Enron dataset
includes only two email features: ‘Subject’ and ‘Body’. Only
Ling and Enron datasets have only two features, i.e., ‘Subject’
and ‘Body’, while other datasets include features, which are
‘Sender’, ‘Receiver’, ‘Date’, ‘Subject’, ‘Body’, and ‘Urls’.

TABLE I
SUMMARY OF CURATED DATASETS WE HAVE CREATED AND RELEASED

Dataset Ling EnronAssassinTREC-05TREC-06TREC-07CEAS-08
Decoded 0 30,494 6,047 92,188 37,786 75,417 1,37,701
Duplicates 34 724 220 29,500 20,079 19,026 70,100
Discrepancy 0 3 18 3,413 254 3 1,217
Total 2,859 29,767 5,809 55,414 16,416 53,757 39,154
Legitimate 2,401 15,791 4,091 32,329 12,411 24,358 17,312
Scam 458 13,976 1,718 23,085 4,005 29,399 21,842
Legit:Scam 84:16 53:47 70:30 58:42 76:24 45:55 44:56
Features Subject, Body Sender, Receiver, Date, Subject, Body, Urls

As observed in Table I, a large number of duplicate emails
are removed in the curation of TREC-05, TREC-06, TREC-07,
and CEAS-08 datasets. Additionally, the discrepancy handling
step impacts the TREC-05 and then CEAS-08 contributing
to a significant reduction in the number of email instances.
However, this removal of inconsistencies is necessary for the
robustness of ML algorithms. Finally, after the curation is
completed, the TREC-05 and TREC-07 datasets contain more
than 50 thousand email instances, while CEAS-08 and Enron
have nearly 40 thousand and 30 thousand emails respectively.

As seen in Table I, the curated datasets Enron, TREC-07,
and CEAS-08 are the fairly balanced in terms of phishing
and legitimate email ratios. On the contrary, the curated Ling
dataset is the most imbalanced with a Legit:Scam ratio of
84:16. The TREC-06 and Assassin datasets also appear to be
imbalanced. Although ML algorithms generally perform better
with balanced datasets, in real-world situations, particularly
in phishing email detection, ML algorithms must deal with
adverse circumstances and imbalanced datasets. Thus, our
release [10] of the curated datasets includes both balanced
and imbalanced datasets of diverse sizes to pose pragmatic
challenges to ML algorithms or similar analyses for making
the target solutions robust and reliable.

IV. APPLYING ML TO OUR CURATED DATASET

Having created the seven curated datasets, we want to de-
termine whether or not they are suitable for the application of
ML algorithms and how well the ML algorithms in association
with NLP techniques perform in the detection of phishing
emails when operated on our curated datasets.

A. Procedure

1) Choice of ML Algorithms: To identify phishing emails,
we apply five distinct ML algorithms: Support Vector Machine
(SVM), Random Forest (RF), Extra Tree (ET), XGBoost
(XGB), and AdaBoost (ADB). These algorithms are chosen
for their wide recognition and effectiveness in phishing email
detection [20]–[23]. Additional information about these chosen
ML algorithms can be found elsewhere [24].

2) Splitting into Training and Test Samples: Instead of
opting for a straightforward train-test split, we adopt “stratified
k-fold”, which is a more robust approach for implementing
10-fold cross-validation while preserving the percentage of
samples for each class. This approach ensures a balanced
representation of different classes in both our training and
testing datasets, closely mirroring the distribution found in the
complete dataset. Such a method is particularly suitable for
handling datasets with imbalanced class distributions, such as
Ling, Assassin, and TREC-06 in our curated datasets.

3) Metrics for Evaluation: For every ML algorithm applied
to each dataset, we document the number of true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN). In our study, FN indicates the number of
phishing email incorrectly identified as legitimate, while FP
represents the number of legitimate email incorrectly identified
as phishing. In contrast, TP occurs when the algorithm cor-
rectly labels a phishing email as phishing. Similarly, TN is the
case where the algorithm correctly identifies legitimate emails.
We then evaluate the performance of each algorithm using
metrics like accuracy, recall, precision, F-score, and ROC [20].

4) Computation for Feature Importance: Feature impor-
tance calculation in ML varies depending on the algorithm
used. In SVM, each feature has a coefficient which represents
its weight in the decision function. Feature importance is
calculated by taking the absolute value of these coefficients.
A larger absolute value indicates that the feature has a greater
impact on the decision boundary. In ensemble models such
as RF and ET, feature importance is calculated by measuring
how each feature contributes to reducing Gini impurity [25]
across all the trees in the forest. The values from each tree
are then averaged to determine overall feature importance. In
ADB, feature importance is determined by evaluating how well
each feature helps decrease prediction errors as weak learners
are combined in a sequence. In XGB, feature importance is
determined by summing the gains, which show how effectively
each feature boosts performance by reducing errors. This
calculation considers all instances where the feature is used
across all trees in the ensemble.

After finding the feature importance of each feature across
all the curated datasets, we normalize them to a range between
0.0 to 1.0. This enables a fair comparison among the feature
importances in the selected five ML algorithms. For each
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algorithm operated on a certain dataset, we assign ranks to
the features in the dataset according to a descending order
of normalized feature importance scores achieved by the ML
algorithm operated on the dataset.

5) Invoking ML Algorithms: For applying ML algorithms
to detect phishing emails in each of the curated datasets, we
use the ‘Subject’ and ‘Body’ features for Ling and Enron
datasets, as for the remaining five datasets, we utilize the
‘Sender’, ‘Receiver’, ‘Date’, ‘Subject’, ‘Body’, and ‘Urls’
features. For each curated dataset, the training subset is used to
train each of the chosen the five ML algorithms utilizing their
default hyper-parameters. Finally, the testing subsets are used
to evaluate the performance of the algorithms. For each ML
algorithm operated on each dataset, we compute the evaluation
metrics, normalized feature importance scores, and feature
ranks described above.

B. Analysis and Findings
For each of the curated datasets, the performances of the

five ML algorithms, as measured in accuracy, precision, recall,
and F-score (averaged over 10 runs for the 10-fold cross
validation) are presented in Table II. For each curated dataset,
the cells shaded in green indicate the best values achieved for
the metrics, while the cells shaded in red indicate the worst
metric values achieved by the five ML algorithms.

TABLE II
PERFORMANCE OF ML ALGORITHMS ON OUR CURATED DATASETS

Dataset Metrics SVM RF ET XGB ADB

Ling

Accuracy (%) 84.21 97.19 97.54 98.95 98.25
Precision (%) 70.91 97.28 97.61 98.96 98.23
Recall (%) 84.21 97.19 97.54 98.95 98.25
F-score (%) 76.99 97.08 97.46 98.93 98.24

Enron

Accuracy (%) 95.87 98.69 98.69 98.45 95.70
Precision (%) 96.09 98.69 98.69 98.46 95.72
Recall (%) 95.87 98.69 98.69 98.45 95.70
F-score (%) 95.87 98.69 98.69 98.45 95.70

Assassin

Accuracy (%) 95.34 98.28 98.45 98.45 98.79
Precision (%) 95.52 98.28 98.45 98.45 98.79
Recall (%) 95.34 98.28 98.45 98.45 98.79
F-score (%) 95.24 98.27 98.44 98.45 98.79

TREC-05

Accuracy (%) 97.47 98.86 99.12 98.57 95.51
Precision (%) 97.47 98.86 99.12 98.57 95.51
Recall (%) 97.47 98.86 99.12 98.57 95.51
F-score (%) 97.47 98.86 99.12 98.57 95.51

TREC-06

Accuracy (%) 93.48 96.34 97.01 97.99 95.43
Precision (%) 93.78 96.44 97.10 97.99 95.39
Recall (%) 93.48 96.34 97.01 97.99 95.43
F-score (%) 93.17 96.25 96.95 97.97 95.40

TREC-07

Accuracy (%) 99.33 99.78 99.85 99.80 98.33
Precision (%) 99.33 99.78 99.85 99.80 98.36
Recall (%) 99.33 99.78 99.85 99.80 98.33
F-score (%) 99.33 99.78 99.85 99.80 98.33

CEAS-08

Accuracy (%) 97.57 99.62 99.69 99.64 97.55
Precision (%) 97.58 99.62 99.69 99.64 97.61
Recall (%) 97.57 99.62 99.69 99.64 97.55
F-score (%) 97.57 99.62 99.69 99.64 97.55

1) Performance of ML Algorithms: As observed in Table II,
for the comparatively balanced datasets Enron, TREC-07,
CEAS-08, and TREC-05, ET performs the best while ADB
performs the worst.

This scenario changes for the highly imbalanced datasets,
namely Assassin, Ling, and TREC-06. For these datasets, the

boosting algorithms ADB and XGB appear superior. Their
strategy of progressively focusing on misclassified data points
allows them to enhance the accuracy for the lesser-represented
class. It is interesting to see that, for the highly imbalanced
datasets, SVM clearly falls behind the four ensemble models
RF, ET, ADB, and XGB. To gain a deeper understanding of the
specific reasons behind this underperformance, conducting a
feature importance analysis is essential. The insights obtained
from this feature analysis, as discussed in Section IV-B2, help
explain the underperformance of SVM.

For the large datasets, particularly those with nearly 40K
instances or more such as TREC-05, TREC-07, and CEAS-
08, ET consistently outperforms all other ML algorithms.
This superior performance can be attributed to the unique
randomization features and the capability to adeptly navigate
and manage the complexities of feature interactions within the
data of ET. In contrast, for these large datasets, ADB performs
poorer than all other ML algorithms. However, ADB performs
better when applied on smaller datasets Ling and Assassin.

TABLE III
CONFUSION MATRIX VALUES FOR OUR CURATED DATASETS

Dataset Best ML TP TN FP FN 𭟋 (%)
Algorithm

TREC-07 ET 2,938 2,429 7 1 0.15
CEAS-08 ET 2,176 1,727 4 8 0.31
Assassin ADB 167 809 3 4 0.71
TREC-05 ET 2,276 3,214 18 33 0.92
Ling XGB 42 240 0 3 1.05
Enron ET 1,377 1,560 19 20 1.31
TREC-06 XGB 374 1,234 7 26 2.01

For each of our seven curated datasets, the best-performing
ML algorithm, along with the corresponding number of TP,
TN, FP, and FN are presented in Table III. The false prediction
(𭟋) percentages of the best-performing ML algorithms are also
included in the rightmost column of Table III. As evident from
Table III, the lowest percentage of false predictions are found
for TREC-07 (0.15%) and CEAS-08 (0.31%).

Across all curated datasets, each of the five ML algorithms
achieves high ROC scores (98.55% or above). For example,
in Figure 2, we present the ROC curves for these algorithms
applied to the Enron dataset where ET performs the best with
an ROC score of 99.88%. Similar ROC curves with high
scores are observed for all the curated datasets. These high
ROC scores as well as the high accuracy, precision, recall,
and F-scores (Table II) achieved by the ML algorithms on all
the curated datasets imply that our datasets are well curated
allowing the ML algorithms to perform very well in email
classification.

2) Feature Importance Analysis: As discussed in Sec-
tion IV-B1, some ML algorithms perform better in relatively
large, balanced datasets while other algorithms are found
to have performed better in relatively smaller imbalanced
datasets. To understand the reasons and to derive insights into
the relative importance of different email features, we carry
out a feature analysis.

For each of the datasets, the normalized feature importance
scores captured for each of the five ML algorithms are
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Fig. 2. ROC curve for the Enron dataset

presented in Figure 3. As observed in the figure, across all the
datasets, email ‘Body’ exhibits the foremost importance in all
ML algorithms, except in SVM. Surprisingly, SVM considers
the ‘Sender’ attribute, when present, as the most important
feature. For the two datasets (i.e., Ling and Enron) having
only two features (i.e., ‘Subject’ and ‘Body’) SVM considers
the ‘Subject’ as more important than the ‘Body’. This must
have caused SVM to perform the poorest among the five ML
algorithms used in our work.

As seen in Figure 3, the importance of other features varies
in different algorithms for each curated dataset. Almost every
ML algorithm (except SVM) puts more emphasis on features
such as ‘Sender’ or ‘Receiver’ or even ‘Date’ in some cases
than the ‘Subject’ feature. On the contrary, all of the five
ML algorithms assign the least importance to the presence
or absence of the ‘Urls’ feature.

TABLE IV
NORMALIZED FEATURE IMPORTANCE SCORES AND RANKS*

Best ML Features
Dataset Algorithm Sender Receiver Date Subject Body Urls

Assasin
ADB 0.06 0.12 0.10 0.04 0.68 0.00
Rank 4 2 3 5 1 6

TREC-05
ET 0.09 0.08 0.10 0.06 0.61 0.05
Rank 3 4 2 5 1 6

TREC-06
XGB 0.06 0.03 0.02 0.08 0.80 0.01
Rank 3 4 5 2 1 6

TREC-07
ET 0.08 0.20 0.02 0.07 0.62 0.01
Rank 3 2 5 4 1 6

CEAS-08
ET 0.05 0.27 0.01 0.07 0.60 0.00
Rank 4 2 5 3 1 6

Subject Body

E
nr

on

Subject Body

Ling
XGB 0.00 1.00 ET 0.09 0.91
Rank 2 1 Rank 2 1

*Here, rank 1 = most important

For a deeper understanding, we focus on the best-
performing ML algorithms for each of the seven datasets,
because these can give us insights into how these algorithms
emphasized certain features to achieve better performances.
For each curated dataset, in Table IV, we identify the ML
algorithm performing best on the dataset, and we present the
normalized importance scores obtained by the algorithm for
the available features. For the convenience of interpretation,

we also rank the features for the algorithm-dataset pairs.
Without surprise, it is observed in Table IV that across all the
datasets, the email ‘Body’ is ranked 1 (i.e., the most important)
in all the ML algorithms at their best performance while the
‘Urls’ feature is consistently regarded as the least important
with rank 6. To our surprise, the ‘Sender’ feature is not given
much importance either.

From the observations discussed above, we realize that the
simple absence/presence of URLs doesn’t contribute much to
the ML algorithms’ detection of phishing emails. A better
URL analysis with an indication of whether or not a URL
is malicious can lead to a useful feature. Moreover, a deeper
analysis of whether or not the ‘Sender’ email addresses
actually correspond to the claimed legitimate senders (e.g.,
name, organization) can also lead to an impactful feature for
distinguishing phishing emails.

V. THREATS TO VALIDITY

Our phishing email detection mechanism is grounded in
the assessment of seven curated datasets we created. These
datasets include emails written in English only. Consequently,
the broad applicability of our findings may be potentially
constrained due to this linguistic preference. Exploring multi-
lingual datasets might offer additional insights and challenges
in phishing email detection.

In this work, we consider only the presence of URLs in
the email body. However, a comprehensive analysis of the
full URL links, studying their structure, domain, and other
attributes, could potentially unearth more intricate patterns
and indicators of phishing attempts. The attachments to the
emails are not considered in this work. We plan to address
this limitation in our future work.

On our curated datasets, we only apply five prominent ML
algorithms none of which involved deep learning. This can be
argued as a limitation of our work. However, without deep
learning, we have achieved 98% or higher accuracy in all
the datasets. Moreover, the objective of our work has been to
produce curated datasets and identify the features that impact
most on the ML algorithms. Nevertheless, we plan to explore
deep learning algorithms for the purpose in the future.

VI. RELATED WORK

ML and NLP methods have been utilized in numerous
fields [26]–[32], including various security elements of soft-
ware applications [33]–[36]. Similarly, recent endeavors to
identify phishing emails have utilized ML and NLP meth-
ods [6], [8], [22], [37]. Some research has focused on using
just one algorithm [5], [6], [38], while others have evaluated
multiple algorithms to determine the best ones [22], [23].
There are studies that used individual datasets [39] or various
datasets [6], [20], [22] and even amalgamations of several
datasets [22]. Some looked into feature analysis [7], [8], while
some analyzed content of the emails [40]–[42].

Several recent initiatives to improve phishing email detec-
tion incorporated invoking suspicion [43], exploring attack
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Fig. 3. Relative importance of different features to the five different ML algorithms when operated on our seven curated datasets

tactics and intentions [42]. Das et al. [9] explored the nu-
ances of phishing and spear phishing through unique security
challenges. They emphasized the need for rich curated datasets
and this work of ours has produced and released seven curated
datasets. In addition, our work also includes a feature analysis
upon operating five ML algorithms on our curated datasets.

Some studies [7], [8] highlighted dataset features, while
some focused on different email languages such as Ara-
bic [21], [37]. Given a typical phishing synopsis, there is a
notable disparity in volume between phishing and legitimate
emails. A 1:1 ratio is no longer popular among many re-
searchers [44]. In our work, we gauged the efficiency of five
ML algorithms on both balanced and imbalanced datasets.

ML techniques such as Naive Bayes, SVM, RF, Deci-
sion Tree, Logistic Regression, AdaBoost, XGBoost, and K-
Nearest Neighbors are widely used for phishing detection [23],
[38], [45]. Agarwal and Kumar [39] fused Naive Bayes with
Particle Swarm Optimization and operated on only one dataset.

Islam et al. [22] assessed four ML algorithms focusing on
specific features of each. Rabbi et al. [20] applied six ML
algorithms on only two datasets. In contrast, we operate five
prominent ML algorithms on seven curated datasets that we
have created. Rabbi et al. [20] reported that the ‘subject’
feature was key for classification while our findings based on
larger datasets report otherwise.

VII. CONCLUSION

In this work, we first create seven curated datasets by
processing repositories of emails from different sources. These
datasets contain 203,176 curated emails ranging from the
years 2000 through 2008 including personal to professional
email communications covering diverse topics of interest. We
have released these datasets for free public use [10] and our
curated datasets are prepared and ready for application of
ML algorithms or similar analyses. The release includes both
balanced and imbalanced datasets of varying sizes to offer
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varying challenges to the ML algorithms to be operated on
them.

We demonstrate the suitability and readiness of our cu-
rated dataset by applying five ML algorithms achieving high
accuracy in phishing email detection. We also quantitatively
examine the significance of different email features in the ML
algorithms’ decision-making and thus derive insights into why
certain algorithms performed better than others and what can
be done in the future to enhance the effectiveness of phishing
email detection. Our quantitative analysis reveals that some
ML algorithms (e.g., SVM) emphasize on wrong features
resulting in poor performances. We also reveal that certain
features such as URLs and sender information are not being
exploited enough at the current state of the art.

We plan to address these by incorporating URL analysis
to indicate whether or not a URL is malicious, and sender
analysis to indicate whether or not a sender email address
legitimately belongs to the claimed person or organization. We
plan to conduct a qualitative analysis of misclassified emails
to reveal patterns causing ML algorithms to miss phishing
emails. In addition, we will further extend our curated datasets
and assess their usefulness with deep learning algorithms.
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