
Improving Source Code with Assistance from AI
— A Pilot Case Study with ChatGPT

Steven McDaniel
Department of Computer Science

Idaho State University
Pocatello, ID, USA

mcdastev@isu.edu

Minhaz F. Zibran
Department of Computer Science

Idaho State University
Pocatello, ID, USA

minhazzibran@isu.edu

Abstract—ChatGPT queries were used to provide feedback
on five C++ programs selected from various programming
assignments for two graduate-level computer science courses – a
scientific programming course and an algorithms course. The
evaluated software was written by the first author for those
courses within the last two years. ChatGPT was asked to evaluate
and provide feedback for each program. Specifically, ChatGPT
was asked to evaluate the code for strengths and weaknesses and
make recommendations for improving (1) execution speed as well
as (2) readability and maintainability. A subjective agreement
rating was generated by the authors for each strength, weakness,
and recommended change provided by ChatGPT. While the
overall agreement with the ChatGPT provided feedback was over
90 percent, at times, ChatGPT’s recommendations were found
misleading.

Index Terms—ChatGPT, Code, Readability, Program, Analy-
sis, Execution Speed, Maintainability

I. INTRODUCTION

Software coding is a highly technical craft that requires

logical thinking as well as familiarity with the languages

and tools used to develop the code. Errors and warnings

provided by compilers, debuggers, and linters can find syntax

errors, formatting discrepancies, and non-adherence to coding

standards and conventions. However, these tools typically only

identify low-level errors that enable modest improvements in

overall software quality and do little to instruct the user on

good coding practices. Consequently, human feedback in the

form of code reviews, paired programming, and the like is used

to supplement programming tools. Unfortunately, the costs and

delays associated with human feedback limit its usage.

With the recently growing popularity of large language

models (LLM) and generative AI (Artificial Intelligence), tools

such as ChatGPT [1] are being adopted for assistance in

various tasks including computer programming. When a pro-

gramming/technical difficulty is encountered, a programmer

typically consults Google search or websites such as Stack

Overflow and Stack Exchange to find a potential solution. But

now, with the advent of AI tools such as ChatGPT, many

practitioners ask the AI tools with questions explaining the

problem. In response, they obtain suggestions or solutions.

ChatGPT has also become popular among students dealing

with programming problems.

However, little is known about how good the AI-generated

solutions are and to what extent the suggestions from the

AI tools are really helpful. Therefore, this case study of

ours investigates using ChatGPT as a mechanism to provide

feedback for improving software quality as a supplement to,

or replacement of, human feedback.

The rest of the paper is organized as follows. In Section II,

we first discuss the work in the literature relevant to this study.

Section III describes the methodology of our study. The results

are presented in Section IV. The findings are further discussed

and contextualized in Section V. The limitations of this work

are addressed in Section VI. Finally, Section VII concludes

the paper.

II. RELATED WORK

There are many studies [2]–[15] of code written by humans,

but the studies of AI-generated code [16]–[19] are rare. Most

analysis of the usefulness of AI for software development is

found in articles and blogs posted on the internet rather than

academic literature. Exceptions include the work of Piccolo et

al. [20] which asserts that many bioinformatics programming

tasks can be automated with ChatGPT and Jesse et al. [21]

which found that the prevalence of single statement bugs

generated by Codex (used in Co-pilot) is up to twice their

prevalence in the GitHub repository that was used to train

Codex.

The consensus among online reviewers [22]–[28], is that

ChatGPT will not replace software engineers but can increase

their productivity. Gewirtz [22] asserts that ChatGPT excels

in assisting with specific coding tasks rather than building

complete applications. Israelsen [23] asserts that ChatGPT

can be faster than searching stack overflow for useful code

snippets. Savona and Ackerson [25] assert that ChatGPT can

simplify and speed up the code development process.

Several online reviews [26]–[28] compare ChatGPT with

Copilot for assisting with software development. A review

from PeopleTechGroup [26] asserts that ChatGPT excels at

brainstorming and providing in-depth coding insights but that

code generated by ChatGPT is less reliable than code gener-

ated by Co-pilot. Lawton [27] asserts that ChatGPT is better

332

2024 7th International Conference on Information and Computer Technologies (ICICT)

2769-4542/24/$31.00 ©2024 IEEE
DOI 10.1109/ICICT62343.2024.00060

20
24

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

fo
rm

at
io

n 
an

d 
C

om
pu

te
r T

ec
hn

ol
og

ie
s (

IC
IC

T)
 | 

97
9-

8-
35

03
-8

56
2-

5/
24

/$
31

.0
0 

©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

IC
T6

23
43

.2
02

4.
00

06
0

Authorized licensed use limited to: Idaho State University. Downloaded on June 05,2024 at 11:18:52 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
DESCRIPTION OF THE FIVE CODE SAMPLES USED IN THIS CASE STUDY

Program ID Course Assignment/Problem Description LOC* Complexity
C1 Scientific Computing Comparison of accuracy of Simpson and Trapezoidal integration techniques1 139 Low
C2 (CS 6XXX) LCG random number generation 69 Medium

C3 Advanced Comparison of Prim’s, Kruskal’s, and Random Algorithms for finding MSTs 428 High
C4 Algorithms Comparison of sorting methods2 quicksort, frequency counting and vector sort 403 High
C5 (CS 5XXX) Priority Queue implementation3 226 High

*LOC = Line of Code. 1Warm up assignment. 2Developed for previous assignment (C3).
3some code was instructor-provided which needed modifications for purposes of the assignment.

Note: Course numbers are partially concealed for the sake of annonymity.

suited than Copilot for summarizing complex code or generat-

ing a starting template for a specific coding task and that both

tools can make developers more productive by automating the

writing of mundane, boilerplate code. Finally, Hutsulyak [28]

asserts that ChatGPT is useful for the generation of code

snippets, code refactoring, and optimization, fixing bugs, API

integration, rapid prototyping, framework, and library usage,

cross-language code migration and integration as a chatbot.

III. METHODOLOGY

The purpose of this study is to qualitatively evaluate feed-

back provided by ChatGPT for code written by the author. It

is believed that personal familiarity with the evaluated code

enables a good assessment of the quality of the feedback.

For obtaining programming aid/suggestions, we used ChatGPT

version 3.5. We have chosen ChatGPT because of its recent

popularity and capability in assisting diverse tasks including

automatic generation of source code.

A. Code Samples

For the study, we used five code samples, which were

used/authored in two computer science graduate-level classes

taught at the Idaho State University. All these code samples

were written in C++, they are of different sizes dealing with

problems at varying levels of difficulty. These pieces of code

were written primarily for completing assignments for the

classes. An overview of each of the programs is shown in

Table I.

The first author of this paper is the author of the five code

samples. He is a highly experienced former software developer

with about five years of experience coding in C, eight years

of experience coding in C++, and 10 years of experience

programming in other programming languages such as C#,

javascript, python, Occam, and pascal. Most of the authors’

experience with C++ is dated and proceeds many of the

improvements made to C++ and associated libraries since

2002.

The focus in writing the code for the Computer Science

classes was on providing accurate results with a minimal

amount of programming effort. Some level of readability was

sought but there was little concern for execution speed, code

reusability, and maintainability.

B. Operating with ChatGPT

For each of the five samples, the following three tasks were

provided to ChatGPT.

1) Evaluate the strengths and weaknesses of the given C++

code.

2) Please recommend changes to the following C++ program

to improve execution speed.

3) Please recommend changes to the following C++ program

to improve readability and maintainability.

The responses provided by ChatGPT were essentially a list

of strengths, weaknesses, and recommended changes, which

in some cases included actual C++ code in addition to a

natural language description of the strengths, weaknesses, or

recommended changes.

C. Reviewing ChatGPT Responses

The strengths, weaknesses, and recommended changes pro-

vided by ChatGPT were compiled into tables with a (short-

ened) description of the strengths, weaknesses, or recom-

mended changes in the first column augmented with a column

for each of the code examples. Highly similar strengths, weak-

nesses, and recommended changes were merged to reduce the

number of rows in the tables.

ChatGPT’s recommendations were also reviewed by the

authors to determine whether those recommendations made

sense. Thus, a (subjective) agreement rating in the likert scale

was generated by the authors and included for each coding

example that the strength, weakness, or recommended change

applied to. The agreement ratings ranged from -2 to +2 using

the Likert scale presented in Table II.

TABLE II
THE LIKERT SCALE USED IN THIS CASE STUDY

-2 -1 0 +1 +2
Strongly

Disagree Neutral Agree
Srongly

disagree agree

IV. RESULTS

Tables III through VI summarize the feedback provided

by ChatGPT. Table III and Table IVrespectively present the

strengths and weaknesses ChatGPT identified in the five

sample programs fed to it and our agreement ratings for each

strength or weakness. Table V presents ChatGPT’s recommen-

dations for enhancing the execution speed of the programs

333

Authorized licensed use limited to: Idaho State University. Downloaded on June 05,2024 at 11:18:52 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
AGREEMENT RATINGS IN LIKERT SCALE (-2 TO +2) FOR CHATGPT IDENTIFIED STRENGTHS

Description of Strengths Identified by ChatGPT Code Samples
C1 C2 C3 C4 C5 All

Well-documented with comments +1 +2 +1 +1
Provides multiple methods for same function +1 +1
Uses the C++ standard library function or template +2 +2 +1
Handles invalid input parameters +1
Provides a practical demonstration of ... +1 +1 +1
Uses a global array which simplifies implementation +2
Encapsulation/Modularized into functions +2 +2
Dynamic Memory Allocation +1
Diversity in Algorithmic Approaches +2
Testing function(s) +2
Includes timing measurements to assess performance +2 +2
Includes thorough explanations of Big O analysis +2
Big O analysis considers various scenarios +2
Relatively simple and easy to follow +2
Utilizes array-based binary heap known for efficient insertion/extraction +2

Feedback Count 5 3 7 5 5 25
Agreement Count 5 3 7 5 5 25

Agreement Percentage 100 100 100 100 100 100

TABLE IV
AGREEMENT RATINGS IN LIKERT SCALE (-2 TO +2) FOR CHATGPT IDENTIFIED WEAKNESSES

Description of Weaknesses Identified by ChatGPT Code Samples
C1 C2 C3 C4 C5 All

Use of #define debug false for conditional debugging output +1
Does not check input parameter validity +2 +2
Error handling is minimal/deficient +2 +2 +2 +2 +2
Lacks unit tests +2 +2 +2
Unnecessary type casting (e.g., using 0.0f instead of 0.0) 0
Magic numbers like 0x01, 0.5f, 24 and 100 +2 +2 +2
Lacks clear separation between input, computation, and output +1
Use of global variables +1 +1 +1
Uses a simple modulo operation (%) to limit the range of generated random numbers which can introduce bias 0
Multiple (non-modular) code segments in a single loop +1
Does not check for potential division by zero +2
Uses raw arrays and pointers for memory management instead of smart pointers or container classes +2
Hardcoded input file +2
Hardcoded iterations +2
Unexplained algorithm-specific details +2
Code duplication +2
Inconsistent formatting +2
Lack of function prototypes +1
Verbose output (prints a lot of information to the console) +2 +2
Code does not consider worst-case scenario +1
Code includes unused variables +2
Inconsistency in memory management +2
Commented-out sections of code +1
Unnecessary print statements +1
Code’s performance measurement is somewhat arbitrary -1
Execution time for sorting large lists is excessive -2
Uses a fixed-size array for the priority queue +1
Doesn’t employ dynamic memory allocation +1
Doesn’t employ modern data structures like std::vector +2
Reset function not particularly useful without queue resizing 0
The printQ function does not provide a comprehensive view of the outputted structure +1
Lack of template-based implementation +2
Unclear comments +1
Utilizes a linear search to find the minimum child +1

Feedback Count 7 7 10 13 9 46
Agreement Count 6 6 10 11 8 41

Agreement Percentage 86 86 100 85 89 89

334

Authorized licensed use limited to: Idaho State University. Downloaded on June 05,2024 at 11:18:52 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V
AGREEMENT RATINGS IN LIKERT SCALE (-2 TO +2) FOR CHATGPT RECOMMENDATIONS FOR IMPROVING EXECUTION SPEED

Description of Recommendations Made by ChatGPT for Improving Execution Speed Code Samples
C1 C2 C3 C4 C5 All

Mark small frequently used functions with ‘inline’ +2
Replace function objects with function pointers -2
Use \n instead of std::endl for newlines +2 +2 +2
Wrap debug statements in preprocessor directives +2
Move the calculation of dX outside the loop -2
Replace bitwise operations with more readable alternatives instead of (i & 0x01), you can use (i % 2 == 1) -2
Avoid using global variables +2 +1
Use constexpr for constants +2
Use pre-increment instead of post-increment +2
Use static cast for type casting +2
Minimize I/O operations, especially printing to the console +2 +2
Explore more efficient random number generation algorithms 0
Use profiling tools to analyze performance +2 +2 +2 +2
Use reserve for allocating vectors +2 +2 +2
Replace raw arrays with smart pointers +2 +2
Avoid dynamic memory allocation inside loops +2
Use emplace back instead of push back when inserting elements into lists +2 +2 +2
Optimize logic to reduce conditional statements +1
Consider using the C++11 <random> instead of rand() +2 +2
Use a local array instead of dynamic memory allocation +2
Consider multi-threading for parallelization -1
Consider using a dynamic array instead of a fixed-sized array -2
Consider unnesting nested loops 0
Avoid unnecessary operations +1
Consider using a more efficient algorithm for bubble-down operations +1

Feedback Count 6 8 9 7 8 38
Agreement Count 3 7 9 6 6 31

Agreement Percentage 50 88 100 86 75 82

TABLE VI
AGREEMENT RATINGS IN LIKERT SCALE (-2 TO +2) FOR CHATGPT RECOMMENDATIONS FOR IMPROVING READABILITY AND MAINTAINABILITY

Description of Recommendations Made by ChatGPT Code Samples
C1 C2 C3 C4 C5 All

Consistent naming conventions +1
Change #define to constexpr +1
Use consistent formatting, spacing and indentation +1 +1 +1
Add more comments +1 +1 +1 +1
Move function declarations before the main function +1
Improve variable names +2
Replace bitwise AND operator with modulo comparison operator -2
Use descriptive and meaningful names for functions and variables +1 +1 +1 +1
Encapsulate (related vars/funcs/params) into a class +2 +2 +1
Encapsulate algorithm steps/logic within functions +2 +2 +1 +2
Use constants instead of magic numbers +2 +2 +2
Use std:: before each identifier instead of namespace std 0
Use smart pointers instead of raw pointers +2
Use const for read-only variables +2 +2
Replace C-Style arrays with standard containers such as std::vector +2 +2
Consider using range-based for loops +1 +1
Instead of using new and delete, use smart pointers +2
Use const references to avoid unnecessary copying when passing arguments +2
Initialize variables when declaring them +2
Use std::vector instead of dynamic arrays +2 +2
Refactor bubble-up and bubble-down operations for better understanding +1
Modularize Test Functions +1

Feedback Count 7 6 10 10 8 41
Agreement Count 6 6 10 10 8 40

Agreement Percentage 84 100 100 100 100 98

335

Authorized licensed use limited to: Idaho State University. Downloaded on June 05,2024 at 11:18:52 UTC from IEEE Xplore.  Restrictions apply. 



and our agreement ratings. Similarly, ChatGPT’s recommen-

dations for enhancing the readability and maintainability of

the programs along with our agreement ratings are presented

in Table VI. An empty cell in the tables implies the absence of

the corresponding strength, weakness, or recommendation for

the corresponding program. For example, as seen in Table III,

the strength “well-documented with comments” was identified

by ChatGPT in programs C1, C2, C3, and C4, but not in C5.

A individual row in the tables includes a description of

the feedback (strength, weakness, or recommended change)

provided by ChatGPT and indicates which of the five code

samples (i.e., C1, C2, C3, C4, and C5) the feedback applies

to. An agreement rating indicates the degree to which the

authors agree with the ChatGPT provided feedback ranging

from strongly disagree (-2) to strongly agree (+2).

Similar feedback descriptions were merged. The number

of distinct feedback items/descriptions were 15 identified

strengths, 22 recommendations for improving readability and

maintainability, 25 recommendations for improving execution

speed, and 34 identified weaknesses. Given the imbalance

between the number of identified strengths and the number

of identified weaknesses, one might assume that ChatGPT

found the provided code examples to be lacking in quality.

This might be due to the fact that the evaluated code, though

accurate for the assigned problem, was not production quality.

An agreement percentage was computed by counting the

number of feedback items that the authors agreed or strongly

agreed with ChatGPT and dividing by the total number of

feedback items. The agreement percentage ranged from 82 per-

cent for identified weaknesses, 89 percent for execution speed

recommendations, 98 percent for readability and maintainabil-

ity recommendations to 100 percent for identified strengths.

From the above statistics, it is apparent that the authors were

generally impressed with the feedback provided by ChatGPT

but found the recommendations for improving execution speed

to be less agreeable than the other feedback provided.

V. DISCUSSION OF RESULTS

The authors learned a few C++ constructs and features that

they were not familiar with despite years of experience with

C and C++. Most of these appeared to be features added

in C++11 and C++17 which the first author had not yet

encountered in the several graduate CS classes he took that

used C++ starting in 2019. These features include the C++11

<random> library, object functors, the ‘inline’ keyword,

the ‘constexpr’ keyword, and the emplace back insertion

mode. From the authors’ perspective, the pedagogical aspect

of using ChatGPT provided significant value particularly since

the disclosed features appeared to be immediately applicable

to the evaluated code.

A. Potentially Misleading Feedback

The one area that the authors found ChatGPT to be poten-

tially misleading was in regard to recommendations to improve

execution speed. Potentially misleading recommendations in-

cluded:

1) Replacing function objects with function pointers. A

search of the internet revealed opposing recommenda-

tions since function objects are typically inlined by the

compiler and therefore faster.

2) Moving the calculation of dX outside the loop. All 3

instances of dX in three separate functions were already

outside the loops in which they are used. This raises

the question of whether or not ChatGPT was aware of

the loop nesting. Or, being a generative AI tool, did it

simply find a comment that appeared to match, and thus

ChatGPT naively included it in its recommendation?

3) Replace (i \& 0x01) with (i \% 2 == 1). While

the order of precedence in the second statement is not

a problem for execution accuracy, in the authors’ ex-

perience a bitwise AND operation is much faster than

the alternative modular arithmetic followed by a logical

comparison operation. However, the latter is possibly

more readable to human programmers of varying levels

of experience.

4) Consider using a dynamic array instead of a fixed-sized

array. In the authors’ experience, dynamic allocation is

much slower than the allocation of local variables.

B. High Agreement Percentages

Despite the potentially misleading recommendations to im-

prove execution speed which resulted in an agreement rate

of 82 percent, the authors agreed with a high percentage of

the feedback provided by ChatGPT. For example, agreement

with identified weaknesses was 89 percent, and agreement with

recommendations for readability and maintainability was 98

percent.

Overall the agreement rate was 91.3 percent. Further study

is needed to determine if the corpus of publications related to

software readability and maintainability is much higher than

software execution speed resulting in better recommendations

for readability and maintainability than with execution speed.

However, a Google search of those phrases resulted in more

hits for “software execution speed” (1.4 billion) than for

“software readability and maintainability” (1.59 million).

VI. THREATS TO VALIDITY

The results of this case study are drawn based on ChatGPT’s

feedback on only five code samples developed as academic

assignments for two graduate-level courses. This small size

of samples and fairly small (in terms of the number of

lines of code) programs dealing with academic assignments

may not represent real-world source code developed in the

industry. This can be viewed as a limitation of this study.

Nevertheless, these small programs were found effective in

evaluating ChatGPT’s assessment of source code and recom-

mendations for improvements. Another possible threat to the

validity of this case study is in equating agreement ratings

with feedback quality. The agreement ratings were generated

by the authors only. However, the authors’ long experience in

the field minimizes this threat.

336

Authorized licensed use limited to: Idaho State University. Downloaded on June 05,2024 at 11:18:52 UTC from IEEE Xplore.  Restrictions apply. 



VII. CONCLUSION

Generative AI tools such as ChatGPT have become popular

among software developers and students seeking assistance

in dealing with programming problems. In this paper, we

have presented a case study on ChatGPT’s recommendations

for improving programs’ execution speed, readability, and

maintainability. Five code samples written in C++ were fed

to ChatGPT and its feedback was analyzed.
ChatGPT appears to provide feedback on software quality

that can reduce the need for human-provided feedback. While

many of ChatGPT’s recommendations made sense, some rec-

ommendations were counter-intuitive. We have noticed that

ChatGPT’s feedback typically favored recommendations for

human readability of source code over technical efficiency.

Therefore, as with any advisor, recommendations provided by

ChatGPT should be vetted and not blindly followed.
In the future, we plan to extend this case study to a large

empirical study with many code samples drawn from diverse

sources and with in-depth quantitative and qualitative analyses.

ACKNOWLEDGEMENT

This work is supported in part by the ISU-CAES (Center

for Advanced Energy Studies) Seed Grant at the Idaho State

University (ISU), USA.

REFERENCES

[1] OpenAI, ChatGPT (version 3.5) Large language model.
https://chat.openai.com, Verified: Feb 2024.

[2] M. Zibran and C. Roy, “Conflict-aware optimal scheduling of code clone
refactoring,” IET Software, vol. 7, no. 3, pp. 167–186, 2013.

[3] M. Islam and M. Zibran, “How bugs are fixed: Exposing bug-fix patterns
with edits and nesting levels,” in 35th ACM/SIGAPP Symposium on
Applied Computing, 2020, pp. 1523–1531.

[4] M. Islam and M. Zibran, “What changes in where? an empirical study of
bug-fixing change patterns,” ACM Applied Computing Review, vol. 20,
no. 4, pp. 18–34, 2021.

[5] M. Islam and M. Zibran, “A comparative study on vulnerabilities in
categories of clones and non-cloned code,” in 10th IEEE Intl. Workshop
on Software Clones, 2016, pp. 8–14.

[6] M. Islam, M. Zibran, and A. Nagpal, “Security vulnerabilities in
categories of clones and non-cloned code: An empirical study,” in 11th
ACM/IEEE Intl. Symposium on Empirical Software Engineering and
Measurement, 2017, pp. 20–29.

[7] M. Zibran, R. Saha, C. Roy, and K. Schneider, “Evaluating the conven-
tional wisdom in clone removal: A genealogy-based empirical study,” in
28th ACM/SIGAPP Symposium on Applied Computing, 2013, pp. 1123–
1130.

[8] M. Islam and M. Zibran, “On the characteristics of buggy code clones:
A code quality perspective,” in 12th IEEE Intl. Workshop on Software
Clones, 2018, pp. 23 – 29.

[9] D. Alwad, M. Panta, and M. Zibran, “An empirical study of the
relationships between code readability and software complexity,” in 27th
International Conference on Software Engineering and Data Engineer-
ing, 2018, pp. 122–127.

[10] M. Islam and M. Zibran, “Towards understanding and exploiting devel-
opers’ emotional variations in software engineering,” in SERA, 2016,
pp. 185–192.

[11] M. Islam and M. Zibran, “Exploration and exploitation of developers’
sentimental variations in software engineering,” Internation Journal of
Software Innovation, vol. 4, no. 4, pp. 35–55, 2016.

[12] M. Islam and M. Zibran, “Sentiment analysis of software bug related
commit messages,” in 27th Intl. Conference on Software Engineering
and Data Engineering, 2018, pp. 3–8.

[13] M. Islam and M. Zibran, “Leveraging automated sentiment analysis in
software engineering,” in MSR, 2017, pp. 203–214.

[14] A. Champa, M. Rabbi, M. Zibran, and M. Islam, “Insights into female
contributions in open-source projects,” in 20th IEEE International Con-
ference on Mining Software Repositories, 2023, pp. 357–361.

[15] M. Rabbi, A. Champa, C. Nachuma, and M. Zibran, “SBOM gener-
ation tools under microscope: A focus on the npm ecosystem,” in In
Proceedings of ACM Symposium on Applied Computing (SAC), 2024,
pp. 1233–1241.

[16] A. I. Champa, M. F. Rabbi, C. Nachuma, and M. F. Zibran, “ChatGPT
in action: Analyzing its use in software development,” in Proceedings
of the 21st International Conference on Mining Software Repositories
(MSR), 2024, p. 5 pages (to appear).

[17] C. Nachuma, M. Rabbi, A. Champa, and M. Zibran, “Analyzing chatgpt
assistance in programming,” in 22nd IEEE/ACIS International Confer-
ence on Software Engineering, Management and Applications (SERA),
2024, p. 6 pages (to appear).

[18] M. F. Rabbi, A. I. Champa, M. F. Zibran, and M. R. Islam, “AI writes,
we analyze: The ChatGPT python code saga,” in Proceedings of ACM
International Conference on Mining Software Repositories (MSR), 2024,
p. 5 pages (to appear).

[19] A. Clark, D. Igbokwe, S. Ross, and M. Zibran, “A quantitative analysis
of quality and consistency in ai-generated code,” in 7th IEEE Interna-
tional Conference on Software and System Engineering (ICoSSE), 2024,
p. 5 pages (to appear).

[20] S. Piccolo, P. Denny, A. Luxton-Reilly, S. Payne, and P. Ridge, Many
bioinformatics programming tasks can be automated with ChatGPT.
https://arxiv.org/abs/2303.13528, Verified: Feb 2024.

[21] K. Jesse, T. Ahmed, P. Devanbu, and E. Morgan,
Large Language Models and Simple, Stupid Bugs.
https://doi.org/10.48550/arXiv.2303.11455, Verified: Feb 2024.

[22] D. Gewirtz, How to use ChatGPT to write code.
https://www.zdnet.com/article/how-to-use-chatgpt-to-write-code/,
Verified: Feb 2024.

[23] A. Israelsen, How to use ChatGPT to write code.
https://www.pluralsight.com/blog/software-development/how-use-
chatgpt-programming-coding, Verified: Feb 2024.

[24] Z. Larson, ChatGPT Isn’t Coming for Your Coding Job.
https://www.wired.com/story/chatgpt-coding-software-crisis/, Verified:
Feb 2024.

[25] H. Savona and D. Ackerson, ChatGPT Writes Code: Will It Replace
Software Developers? https://semaphoreci.com/blog/chatgpt-software-
developers, Verified: Feb 2024.

[26] P. Group, GitHub Copilot vs ChatGPT Which Is The Go To Devel-
opers. https://peopletech.com/blogs/github-copilot-vs-chatgpt-which-is-
the-go-to-developers/, Verified: Feb 2024.

[27] G. Lawton, GitHub Copilot vs. ChatGPT: How do they compare?
https://www.techtarget.com/searchenterpriseai/tip/GitHub-Copilot-vs-
ChatGPT-How-do-they-compare, Verified: Feb 2024.

[28] O. Hutsulyak, ChatGPT vs Copilot: Which And When To Use.
https://www.techmagic.co/blog/github-copilot-vs-chatgpt/, Verified: Feb
2024.

337

Authorized licensed use limited to: Idaho State University. Downloaded on June 05,2024 at 11:18:52 UTC from IEEE Xplore.  Restrictions apply. 


