2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR)

Al Writes, We Analyze: The ChatGPT Python Code Saga

Md Fazle Rabbi, Arifa Champa, Minhaz Zibran
Idaho State University, USA
{mdfazlerabbi,arifaislamchampa, minhazzibran}@isu.edu

ABSTRACT

In this study, we quantitatively analyze 1,756 Al-written Python
code snippets in the DevGPT dataset and evaluate them for quality
and security issues. We systematically distinguish the code snippets
as either generated by ChatGPT from scratch (ChatGPT-generated)
or modified user-provided code (ChatGPT-modified). The results re-
veal that ChatGPT-modified code more frequently displays quality
issues compared to ChatGPT-generated code. The findings provide
insights into the inherent limitations of Al-written code and em-
phasize the need for scrutiny before integrating such pieces of code
into software systems.

KEYWORDS
Code quality, Code security, ChatGPT, Python, CWE, Analysis

ACM Reference Format:

Md Fazle Rabbi, Arifa Champa, Minhaz Zibran and Md Rakibul Islam. 2024.
AI Writes, We Analyze: The ChatGPT Python Code Saga. In 21st International
Conference on Mining Software Repositories (MSR °24), April 15-16, 2024,
Lisbon, Portugal.

1 INTRODUCTION

The field of software engineering has changed a lot recently as
conversational Artificial Intelligence (AI) like ChatGPT has become
popular. Developers and non-developers now use these Al systems
to seek help with all kinds of tasks. Among the many ways ChatGPT
is used, programming assistance makes up a major category.

According to a survey [37] in 2023, 92% of US developers say Al
tools like ChatGPT help them be more productive at programming
tasks. This growing reliance on Al is not surprising. With its ability
to generate content, ChatGPT has proven itself as a great coding
assistant - it can quickly help developers implement algorithms and
solve problems. Validating this, a study [4] by the National Bureau
of Economic Research highlighted the potential of generative Al
such as ChatGPT to boost workforce productivity by 14%.

With new technology comes potential issues. While ChatGPT
can provide executable code, there are growing concerns about the
quality and security of the code it generates [16]. Using poor quality
or insecure ChatGPT code in projects could cause anything from
small bugs to huge security breaches resulting in a compromise of
the entire system.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR ’24, April 15-16, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04...$15.00
https://doi.org/10.1145/3643991.3645076

177

Md Rakibul Islam
Lamar University, USA
mislam108@lamar.edu

In this work, we examine the quality and security of Python
code snippets produced through interactions of developers with
ChatGPT. In particular, we address two research questions (RQs):
RQ1: How is the quality of Python code developed with assistance
from ChatGPT?

RQ2: How prevalent are different security vulnerabilities in ChatGPT-
aided Python code?

A good understanding of the prevalent security and quality is-
sues in source code generated/aided by ChatGPT is beneficial in two
ways. First, the developers will be informed of such issues so that
they can particularly examine in search for such issues and sanitize
before using the Al-generated code in their projects. Second, Al
systems like ChatGPT can be better trained around those issues
leading to more trustworthy Al-tools capable of generating more
reliable source code. Therefore, we address the aforementioned re-
search questions by carefully examining 1,756 Python code snippets
produced through developers’ interactions with ChatGPT.

2 METHODOLOGY
2.1 Dataset

The 1,756 code snippets and corresponding interactions between
ChatGPT and the developers are drawn from six different sources
in the DevGPT dataset [41]. We use the DevGPT snapshot, labeled
20230914, obtained on September 15, 2023. The snapshot includes
17,622 prompts and ChatGPT responses including 12,031 code snip-
pets among which 1,756 are written in Python.

We particularly focus on Python code for two reasons. First,
Python has been one of the three most popular programming lan-
guages worldwide for nine consecutive years [15]. Second, Python
code is also dominant in the chosen snapshot of the DevGPT dataset.
Out of the total 12,031 code snippets, 1,756 are written in Python,
followed by 1,638 bash code and 1,500 JavaScript snippets.

2.2 Approach

First, we extract Python code snippets provided by ChatGPT in
its responses resulting in 1,756 Python snippets. Then we iden-
tify prompts from the conversations that contain Python code in
the responses and we extract any Python code snippets contained
within these prompts. This task is accomplished by leveraging the
gpt-3.5-turbo API [31].

This process results in two distinct sets of code snippets for each
ChatGPT conversation: one containing code from the prompts that
are developer-provided and another containing code snippets in the
responses from ChatGPT. We observe that without any developer-
provided code in the prompts, ChatGPT generates completely new
code, which we call ChatGPT-generated. When prompts contain
developer-provided code, ChatGPT may slightly modify the pro-
vided code, which we call ChatGPT-modifed. Thus, there remains a
substantial similarity between a developer-provided code snippet
and the corresponding ChatGPT-modifed code snippet.

MSR °24, April 15-16, 2024, Lisbon, Portugal

Hence, to distinguish the ChatGPT-modifed code snippets, we
measure similarities between the code snippets from prompts and
responses using cosine similarity [28]. We test with cosine sim-
ilarity thresholds from 0.2 to 0.8 on 50 random code pairs and
settle on a threshold of 0.7. A similar approach was adopted by Wu
et al. [40]. Thus we distinguish 213 python snippets as ChatGPT-
modified. The rest 1,543 are regarded as ChatGPT-generated. We
continue with comparative analyses between ChatGPT-modifed and
ChatGPT-generated code. For the 213 ChatGPT-modified code snip-
pets, we also preserve the corresponding 213 developer-provided
code snippets from the original prompts.

2.2.1 Measuring Code Quality. Using Pylint 3.0.2 [35], we sepa-
rately analyze the ChatGPT-modifed and ChatGPT-generated code
snippets to capture key code quality issues of four types: errors
(E), conventions (C), warnings (W), and refactoring (R). We ex-
clude import-related issues from our analysis due to Pylint’s lim-
ited reliability in accurately assessing import statements [39]. We
also overlook missing docstring-related issues, i.e., C0114 (missing
module), C0115 (missing class), and C0116 (missing function) as
ChatGPT-aided code might not always include docstrings. Addition-
ally, we discard style-related issues such as whitespace, newlines,
and invalid naming conventions.

2.2.2 Capturing Security Vulnerabilities: Using Bandit 1.7.5 [34],
we again separately analyze the ChatGPT-modifed and ChatGPT-
generated code snippets for capturing security vulnerabilities in
them. Upon analysis, Bandit provides a report detailing potential
issues of different types having each type identified with a CWE
(Common Weakness Enumeration) ID [8]. For each type of issue
identified as a CWE, Bandit generates one or more issues detailing
the specific security vulnerabilities in deeper detail.

2.3 Metrics
For the comparative quantitative analysis, we define the following
four metrics concerning issue types (denoted as 7) and individual
issues (denoted as i). For code quality issues, 7 € {E, C, W, R}. For
security issues, 7 € {all CWEs}.
o For each issue type 7, the average number of issues of type 7
per code snippet, denoted by «, is calculated as:

Total occurrances of issues of type 7
ar =

Total number of code snippets)
e For each issue type 7, the proportion of code snippets with
at least one issue of type 7, denoted as fi, is obtained by:
Total code snippets with issues of type 7

b= Total number of code snippets @

e For each issue i, the average number of occurrences of issue
i across snippets, denoted as y;, is computed as:

Total number of occurrences of issue i
Yi=

3

Total number of code snippets ©®)
e For each issue i, the proportion of code snippets having one
or more occurrences of issue i, denoted as v;, is defined as:

©)

Total code snippets having the issue i

Vi =
! Total number of code snippets

3 ANALYSIS AND FINDINGS

For the ChatGPT-generated code snippets, we compute all the afore-
mentioned metrics separately for code quality issues and security
issues. We do the same for ChatGPT-modified code snippets as well.

178

Md Fazle Rabbi, Arifa Champa, Minhaz Zibran and Md Rakibul Islam

3.1 Code Quality Assessment

For ChatGPT-generated and ChatGPT-modified code snippets, in
Table 1, we summarize a; and f; metric values concerning the
four types of code quality issues. As seen in the table, the values of
both these metrics are higher for ChatGPT-modified code across all
four types of issues. We find that 76.46% (i.e., 1180 out of 1543) of
ChatGPT-generated code snippets have one or more code quality
issues whereas the proportion is 84.51% (i.e., 180 of 213) for the
ChatGPT-modified code. This implies that ChatGPT-modified code
is more prone to quality issues compared to ChatGPT-generated
code.

Table 1: Summary of code quality issue types

Type|In ChatGPT-generated Code| In ChatGPT-modified Code
() ar B ar B
E 1.70 0.55 3.08 0.54
C 0.27 0.13 1.31 0.42
w 0.53 0.24 0.96 0.31
R 0.18 0.13 0.26 0.21

To get an idea of whether or not the issues in ChatGPT-modified
code are introduced by ChatGPT or they might have already existed
in the developer-provided code, we make a comparison between
developer-provided and ChatGPT-modified code.

35 9
2 ® ChatGPT-modified
3 b
~
2.5
2
15
1
0.5
0

m Developer-provided

-
D]
- [*2) (o) [Ce)
)]
o o o
o
S 4
-
Error Convention Warning Refactoring

Figure 1: Code quality issues per code snippet (a;)

Figure 1 shows that developer-provided code has lower rates
of errors, convention violations, and refactoring suggestions (with
equal rates of warnings) compared to ChatGPT-modified code. This
indicates the possibility that ChatGPT’s modifications might have
introduced new issues to the developer-provided code.

3.1.1 Most Frequent Quality Issues. As seen in Table 1, errors are
the most frequent issues in both ChatGPT-generated and ChatGPT-
modified code, while refactoring suggestions are the least frequent.

From our analysis, we find that all the 1,543 ChatGPT-generated
code snippets collectively contain 4,156 occurrences of 69 distinct
issues. In contrast, the 213 ChatGPT-modified code snippets col-
lectively have 1,196 occurrences of 38 distinct issues. We compute
yi and v; metric values for each of the 69 district issues found in
ChatGPT-generated code and for each of the 38 distinct issues in
ChatGPT-modified code. Due to limitation of space, in Table 2, we
present results for the five most frequent issues in each issue type
found in ChatGPT-modified and ChatGPT-generated code.

As seen in Table 2, in each type of code quality issues, two or
more most frequent issues are common, as highlighted and marked
in italics, in both ChatGPT-modified and ChatGPT-generated code.
For example, E0602, E0001, and E1101 are among the five most

Al Writes, We Analyze: The ChatGPT Python Code Saga

MSR ’24, April 15-16, 2024, Lisbon, Portugal

Table 2: Most frequent code quality issues in ChatGPT-generated and ChatGPT-modified code snippets

Type (7) In ChatGPT-generated Code In ChatGPT-modified Code
Issue Yi v; || Issue Yi Vi
E0602:undefined-variable 1.475 | 0.409 || E0602-undefined-variable 2.9390.502
E0001-syntax-error 0.099 | 0.099 || E1101-no-member 0.080 (0.038
Error (E) E1101-no-member 0.084 | 0.029 || E1120-no-value-for-parameter 0.019{0.019
E0611-no-name-in-module 0.014 | 0.011 || E0001-syntax-error 0.014 | 0.014
E0104-return-outside-function 0.008 | 0.007 || E0601-used-before-assignment 0.009 | 0.009
C0301-line-too-long 0.251 | 0.126 || C0301-line-too-long 1.249 | 0.394
C0321-multiple-statements 0.008 | 0.003 || C0209-consider-using-f-string 0.024 | 0.024
Convention (C) | C0209-consider-using-f-string 0.005 | 0.003 || C2401-non-ascii-name 0.014 {0.014
C0200-consider-using-enumerate 0.004 | 0.003 || C0200-consider-using-enumerate 0.014|0.014
C0325-superfluous-parens 0.003 | 0.003 || C0325-superfluous-parens 0.005 | 0.005
W0621-redefined-outer-name 0.165 | 0.070 || W1203-logging-fstring-interpolation |0.221 | 0.047
WO0613-unused-argument 0.090 | 0.048 || W0613-unused-argument 0.103 | 0.052
Warning (W) WO0612-unused-variable 0.064 | 0.042 || W0718-broad-exception-caught 0.099 | 0.094
W1514-unspecified-encoding 0.060 | 0.041 || W0612-unused-variable 0.099 | 0.052
W0718-broad-exception-caught 0.021{0.018 || W1309-f-string-without-interpolation | 0.094 | 0.056
R0903-too-few-public-methods 0.088 | 0.063 || R0903-too-few-public-methods 0.117 | 0.094
R1705-no-else-return 0.033 | 0.031 || R1705-no-else-return 0.042 | 0.033
Refactoring (R) | R0913-too-many-arguments 0.010 | 0.009 || R1714-consider-using-in 0.038 | 0.028
R1710-inconsistent-return-statements | 0.009 | 0.009 || R1735-use-dict-literal 0.019{0.019
R1725-super-with-arguments 0.008 | 0.008 || R1732-consider-using-with 0.014 | 0.014

frequent errors found in both ChatGPT-modified and ChatGPT-
generated code. However, the y; and v; values show clear differ-
ences in their frequency of occurrences. For example, the modified
code has nearly double the y; and higher v; for E0602 error. On
the other hand, the E0001 in ChatGPT-generated code is nearly
seven times more frequent than in ChatGPT-modified code. Similar
scenarios are also observed for the other types of issues. Based on
the observations, we now derive the answer to RQ1 as follows:

Ans. to RQ1: ChatGPT-modified code is more prone to code quality
issues than ChatGPT-generated code and developer-provided code.
There is a possibility that ChatGPT’s modifications to developer-
provided code may introduce more quality issues. There are sub-
stantial overlaps among the most frequent issues found in ChatGPT-
generated and ChatGPT-modified code.

3.2 Assessment of Security Vulnerabilities

For both the ChatGPT-Generated and ChatGPT-modified code, in
Table 3, we separately present the captured security issues and
their corresponding CWE types along with the a; for CWEs and y;
values for individual issues. The table is sorted to «;. As seen in the
table, 19 distinct security issues related to 10 unique CWE types are
found in ChatGPT-Generated, while only seven distinct security
issues related to six unique CWEs are found in ChatGPT-modified
code. All the six CWEs reflected in the ChatGPT-modified code are
also reflected in the ChatGPT-Generated code. A more diverse set
of security issues and CWEs are found in the ChatGPT-Generated
code likely because this set contains 1,543 code snippets compared
to only 213 ChatGPT-modified code snippets.

Interestingly, the security issue B113 under CWE-400 is found the
most frequent in both ChatGPT-Generated and ChatGPT-modified
code when we consider the a; and y; values. The order of the
remaining CWEs differs between the two sets of code snippets. The
top three CWEs reflected in ChatGPT-modified code (i.e., CWE-
400, 703, 78) are found more frequently in ChatGPT-modified code

179

Table 3: Security vulnerabilities in ChatGPT-aided code

[Type (1) [a,[lssues [)/i]
In ChatGPT-generated code
CWE-4000.021|B113:request_without_timeout 0.021

B404:blacklist (import_subprocess) 0.006
B603:subprocess_without_shell_equals_true 0.004
CWE-78 |0.019|B607:start_process_with_partial_path 0.004
B602:subprocess_popen_with_shell_equals_true|0.002
B601:paramiko_calls 0.002
B102:exec_used 0.001
CWE-259|0.016|B105:hardcoded_password_string 0.014
B106:hardcoded_password_funcarg 0.002
CWE-703[0.016/B101:assert_used 0.016
CWE-94 |0.013|B201:flask_debug_true 0.012
B701:jinja2_autoescape_false 0.001
CWE-330(0.011|B311:blacklist (random) 0.011
CWE-327|0.007|B324:hashlib 0.005
B413:blacklist (import_pycrypto) 0.002
CWE-502|0.006{B403:blacklist (import_pickle) 0.003
B301:blacklist (pickle) 0.003
CWE-605/|0.001|B104:hardcoded_bind_all_interfaces 0.001
CWE-20 {0.001/B506:yaml_load 0.001
In ChatGPT-modified code
CWE-400/0.052[B113:request_without_timeout 0.052
CWE-703|0.038|B101:assert_used 0.038
CWE-78 |0.028{B404:blacklist (import_subprocess) 0.014
B602:subprocess_popen_with_shell_equals_true|0.014
CWE-94 |0.014[B201:flask_debug_true 0.014
CWE-330{0.009|B311:blacklist (random) 0.009
CWE-259|0.005{B105:hardcoded_password_string 0.005

compared to the ChatGPT-generated code as inferred from the
values of a;. However, not much difference is observed for the rest
three CWEs.

The higher frequency of the three CWEs in ChatGPT-modified
code, may give a wrong impression that such code snippets are

MSR °24, April 15-16, 2024, Lisbon, Portugal

more susceptible to security issues compared to ChatGPT-generated
code. Hence, to further investigate, we capture the security vul-
nerabilities in the developer-provided code corresponding to the
ChatGPT-modified counterparts. In Figure 2, we present the a;
values computed for all six CWEs.

0.06 ™ ChatGPT-modified §
m Developer-provided =] 0 0
0.05 per-p| o g
004 8% 3 S o
S 9o S
003 ©S° <
o [
0.01 I 3 3 S
0 E = [| O

CWE-78 CWE-94 CWE-259 CWE-330 CWE-400 CWE-703
Figure 2: Security issues per code snippet (a;)

As seen in the figure, CWE-94, CWE-330, and CWE-400 are more

frequently found in ChatGPT-modified code but CWE-259 is more
frequently encountered in developer-provided code while CWE-
78 and CWE-703 are equally present in both categories of code.
Thus, here we cannot infer whether the security vulnerabilities
were originally introduced by ChatGPT, which could have made
the ChatGPT-modified code contain more security issues.
3.2.1 Relating Mitre’s Top 25. The Mitre Corporation maintains a
list [9] of “Top 25 Most Dangerous Software Weaknesses,” which
is a list of CWEs updated annually. Mitre also maintains another
list of “stubborn weaknesses” [10] that includes those CWEs that
consistently appear throughout the last five years’ Top 25 Most
Dangerous Software Weaknesses.

Table 4: Code snippets with CWEs in Mitre’s 2023 top 25

Type (1) [b [Rank™ || Type (1) [Br [Rank”
In ChatGPT-generated code In ChatGPT-modified code
CWE-78 0.009 5 || CWE-78 0.014 5
CWE-20 0.001 6 || CWE-94 0.014 23
CWE-502 0.003 15 | *rank in the current list of top 25 [7]
CWE-94 0.013 23 | (lower rank implies more dangerous).

As shown in Table 4, out of the 10 unique CWEs identified in the
ChatGPT-generated code, four of them are among Mitre’s current
(2023) top 25 most dangerous software weaknesses [7], whereas
two of the six identified CWEs in ChatGPT-modified code are in the
list. Among the 15 “stubborn weaknesses”, three (i.e., CWE-78, 20,
502) are found in the ChatGPT-generated code, while one (CWE-78)
found in ChatGPT-modified code. Again, the larger size of the set
of the ChatGPT-generated snippets is a possible explanation for
why this particular set shares more CWEs with the current top 25
most dangerous software weaknesses and 15 “stubborn weaknesses.”
The similar f; values further indicate no substantial differences of
those CWEs’ appearances in either set of code. Based on the above
observations, we now derive the answer to RQ2 as follows:

Ans. to RQ2: Concerning security issues, there are no significant
differences between ChatGPT-generated and ChatGPT-modified
code. The security vulnerabilities found in ChatGPT-modified code
are sometimes introduced by ChatGPT while sometimes they previ-
ously existed in the developer-provided code.

180

Md Fazle Rabbi, Arifa Champa, Minhaz Zibran and Md Rakibul Islam

4 THREATS TO VALIDITY

One significant factor that can impact the validity of our analysis is
the reliability of the tools, Pylint and Bandit, we employ. However,
Pylint was reported to have 100% precision and Bandit was reported
to have 90.79% precision [38]. Additionally, our analyses have not
taken into account the sizes of the individual code snippets as we
have seen that the sizes of the code snippets we encountered have
not varied much. Our study focuses on Python code only. Thus,
the conclusions drawn from this work may not apply to other
programming languages. The findings are derived entirely based
on quantitative analyses. Some qualitative insights could be useful
in deepening our understanding of the results. Lastly, we restrict
our focus to security vulnerabilities enumerated in the CWE list.
Despite being a well-regarded catalog of weaknesses used widely in
security research and industry, it may not represent an exhaustive
compilation of every possible security issue.

5 RELATED WORK
There are many studies [2, 5, 6, 17-25, 36, 43, 43, 44] of code written
by humans, but the studies of Al-generated code are scarce. Al code
generation tools like Copilot [14] and Codex [32] have been found
capable of generating functionally accurate code [11, 30, 42] and the
presence of common bugs and security vulnerabilities [13, 33, 38].
Aljanabi et al. [1] highlighted ChatGPT’s untapped potential for
code generation, while Avila et al. [3] evaluated its skill at web-
based tasks. Liu et al. [27] identified quality problems in ChatGPT’s
code output, from compilation errors to maintainability difficulties.
Nair et al. [29] studied ChatGPT’s capabilities for hardware code
generation and emphasized the need for careful prompting to avoid
the generation of insecure code. Feng et al. [12] used crowdsourcing
data to evaluate Python code from ChatGPT, identifying common
errors. Khoury et al. [26] examined ChatGPT’s understanding of se-
curity concerns, observing occasional non-robust code generation.
Our study stands out with a focus on comparative analysis of
the quality and security vulnerabilities in ChatGPT-generated and
ChatGPT-modified Python code including further comparisons with
the original developer-provided code in the prompts.

6 CONCLUSION

In this paper, we have presented a quantitative study of the secu-
rity and quality issues in Python code produced with assistance
from ChatGPT. The code snippets are extracted from analyzing
developers’ conversations involving 17,622 prompts and ChatGPT
responses in the DevGPT dataset [41].

Using a set of four metrics, we analyze the 1,756 Python code
snippets categorized as either ChatGPT-generated code or ChatGPT-
modified code produced from modifications to developer-provided
original snippets. We find relatively more code quality issues in
ChatGPT-modified code compared to ChatGPT-generated code. On
the contrary, both categories of code almost equally include security
vulnerabilities.

These findings imply that there is ample room for Al tools to
improve in minimizing quality and security issues while generating
and editing source code. The results also advocate for caution in
using Al-aided code in software projects. In the future, we plan
to extend this study by incorporating code written in diverse pro-
gramming languages and also by deriving deeper insights through
qualitative investigations.

Al Writes, We Analyze: The ChatGPT Python Code Saga

ACKNOWLEDGEMENT

This work is supported in part by the ISU-CAES Seed Grant at the
Idaho State University, USA.

REFERENCES

(1]

(2]

[11]

[12]

[13]

[14

[15]

[16]

[17]

[18]

[19

[20]

[21]

Mohammad Aljanabi, Mohanad Ghazi, Ahmed Hussein Ali, Saad Abas Abed,
et al. 2023. ChatGPT: open possibilities. Iraqi Journal For Computer Science and
Mathematics 4, 1 (2023), 62—64.

D. Alwad, M. Panta, and M. Zibran. 2018. An Empirical Study of the Relation-
ships between Code Readability and Software Complexity. In 27th International
Conference on Software Engineering and Data Engineering. 122-127.

Laurent Avila-Chauvet, Diana Mejia, and Christian Oswaldo Acosta Quiroz. 2023.
Chatgpt as a support tool for online behavioral task programming. Available at
SSRN 4329020 (2023).

Erik Brynjolfsson, Danielle Li, and Lindsey R Raymond. 2023. Generative AI at
Work. Working Paper 31161. National Bureau of Economic Research. https:
//doi.org/10.3386/w31161

A. Champa, M. Rabbi, M. Zibran, and M. Islam. 2023. Insights into Female
Contributions in Open-Source Projects. In 20th IEEE International Conference on
Mining Software Repositories. 357-361.

Arifa I. Champa, Md Fazle Rabbi, Costain Nachuma, and Minhaz F. Zibran. 2024.
ChatGPT in Action: Analyzing Its Use in Software Development. In Proceedings
of the 21st International Conference on Mining Software Repositories (MSR 2024).
The MITRE Corporation. 2023. 2023 CWE Top 25 Most Dangerous Software
Weaknesses. Retrieved December, 2023 from https://cwe.mitre.org/top25/archive/
2023/2023_top25_list.html

The MITRE Corporation. 2023. CWE - Common Weakness Enumeration. Retrieved
December 2023 from https://cwe.mitre.org/

The MITRE Corporation. 2023. CWE Top 25 Most Dangerous Software Weaknesses.
Retrieved December, 2023 from https://cwe.mitre.org/top25/

The MITRE Corporation. 2023. Stubborn Weaknesses in the CWE Top 25. Retrieved
December 2023 from https://cwe.mitre.org/top25/archive/2023/2023_stubborn_
weaknesses.html

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated repair of programs from large language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1469-1481.

Yunhe Feng, Sreecharan Vanam, Manasa Cherukupally, Weijian Zheng, Meikang
Qiu, and Haihua Chen. 2023. Investigating Code Generation Performance of Chat-
GPT with Crowdsourcing Social Data. In Proceedings of the 47th IEEE Computer
Software and Applications Conference. 1-10.

Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, and Jiaxin Yu.
2023. Security Weaknesses of Copilot Generated Code in GitHub. arXiv preprint
arXiv:2310.02059 (2023).

GitHub. 2023. GitHub copilot - your Al pair programmer. Retrieved December
2023 from https://github.com/features/copilot

GitHub. 2023. The top programming languages. Retrieved December 2023 from
https://octoverse.github.com/2022/top- programming-languages

Morey Haber. 2023. Two Cybersecurity Concerns When Using Chat-
GPT For Software Development. Retrieved December 2023 from https:
//www.forbes.com/sites/forbestechcouncil/2023/03/29/two-cybersecurity-
concerns-when-using-chatgpt-for-software-development/

M. Islam and M. Zibran. 2016. A Comparative Study on Vulnerabilities in Cate-
gories of Clones and Non-Cloned Code. In 10th IEEE Intl. Workshop on Software
Clones. 8-14.

M. Islam and M. Zibran. 2016. Exploration and Exploitation of Developers’
Sentimental Variations in Software Engineering. Internation Journal of Software
Innovation 4, 4 (2016), 35-55.

M. Islam and M. Zibran. 2016. Towards Understanding and Exploiting Developers’
Emotional Variations in Software Engineering. In SERA. 185-192.

M. Islam and M. Zibran. 2017. Leveraging Automated Sentiment Analysis in
Software Engineering. In MSR. 203-214.

M. Islam and M. Zibran. 2018. On the Characteristics of Buggy Code Clones: A
Code Quality Perspective. In 12th IEEE Intl. Workshop on Software Clones. 23 —
29.

181

[22

[23]

[24

[25

Iy
S

[27

[28

[29

[30

w
—

[32

(33]

[34

[35

[36

[37

(38]

[39

[40

N
furg

[42

[43]

[44

MSR ’24, April 15-16, 2024, Lisbon, Portugal

M. Islam and M. Zibran. 2018. Sentiment Analysis of Software Bug Related
Commit Messages. In 27th Intl. Conference on Software Engineering and Data
Engineering. 3-8.

M. Islam and M. Zibran. 2020. How Bugs Are Fixed: Exposing Bug-fix Pat-
terns with Edits and Nesting Levels. In 35th ACM/SIGAPP Symposium on Applied
Computing. 1523-1531.

M. Islam and M. Zibran. 2021. What Changes in Where? An Empirical Study
of Bug-Fixing Change Patterns. ACM Applied Computing Review 20, 4 (2021),
18-34.

M. Islam, M. Zibran, and A. Nagpal. 2017. Security Vulnerabilities in Categories
of Clones and Non-Cloned Code: An Empirical Study. In 11th ACM/IEEE Intl.
Symposium on Empirical Software Engineering and Measurement. 20-29.
Raphaél Khoury, Anderson R Avila, Jacob Brunelle, and Baba Mamadou Camara.
2023. How Secure is Code Generated by ChatGPT? arXiv preprint arXiv:2304.09655
(2023).

Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li Li,
Xuan-Bach D Le, and David Lo. 2023. Refining ChatGPT-Generated Code: Char-
acterizing and Mitigating Code Quality Issues. arXiv preprint arXiv:2307.12596
(2023).

Christopher D Manning. 2009. An introduction to information retrieval. Cambridge
university press.

Madhav Nair, Rajat Sadhukhan, and Debdeep Mukhopadhyay. 2023. Generating
secure hardware using chatgpt resistant to cwes. Cryptology ePrint Archive
(2023).

Nhan Nguyen and Sarah Nadi. 2022. An empirical evaluation of GitHub copilot’s
code suggestions. In Proceedings of the 19th International Conference on Mining
Software Repositories. 1-5.

OpenAl 2023. Models Overview. Retrieved December 2023 from https://platform.
openai.com/docs/models/gpt-3-5/

OpenAl 2023. OpenAlI Codex. Retrieved December 2023 from https://openai.
com/blog/openai-codex

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754-768.

PyPL 2023. Bandit 1.7.5 Project description.
https://pypi.org/project/bandit/

PyPL 2023. Pylint 3.0.2 Project description.
https://pypi.org/project/pylint/

Md Fazle Rabbi, Arifa I. Champa, Costain Nachuma, and Minhaz F. Zibran. 2024.
SBOM Generation Tools Under Microscope: A Focus on the npm Ecosystem. In
In Proceedings of ACM Symposium on Applied Computing (SAC 2024).

Inbal Shani and GitHub Staff. 2023. Survey reveals AI's impact on the developer ex-
perience. Retrieved December 2023 from https://github.blog/2023-06-13-survey-
reveals-ais-impact-on-the-developer-experience/

Mohammed Latif Siddiq, Shafayat H Majumder, Maisha R Mim, Sourov Jajodia,
and Joanna CS Santos. 2022. An Empirical Study of Code Smells in Transformer-
based Code Generation Techniques. In 2022 IEEE 22nd International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 71-82.
Bart Van Oort, Luis Cruz, Mauricio Aniche, and Arie Van Deursen. 2021. The
prevalence of code smells in machine learning projects. In 2021 IEEE/ACM 1st
Workshop on Al Engineering-Software Engineering for AI (WAIN). IEEE, 1-8.
Menghan Wu, Yang Zhang, Jiakun Liu, Shangwen Wang, Zhang Zhang, Xin Xia,
and Xinjun Mao. 2022. On the way to microservices: Exploring problems and
solutions from online q&a community. In 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 432-443.

Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2024. De-
vGPT: Studying Developer-ChatGPT Conversations. In Proceedings of the Inter-
national Conference on Mining Software Repositories (MSR 2024).

Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the quality of
GitHub copilot’s code generation. In Proceedings of the 18th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering. 62-71.

M. Zibran and C. Roy. 2013. Conflict-aware Optimal Scheduling of Code Clone
Refactoring. IET Software 7, 3 (2013), 167-186.

M. Zibran, R. Saha, C. Roy, and K. Schneider. 2013. Evaluating the Conven-
tional Wisdom in Clone Removal: A Genealogy-based Empirical Study. In 28th
ACM/SIGAPP Symposium on Applied Computing. 1123-1130.

Retrieved December 2023 from

Retrieved December 2023 from

