
ChatGPT in Action: Analyzing Its Use in Software Development
Arifa I. Champa, Md Fazle Rabbi, Costain Nachuma, Minhaz F. Zibran

Department of Computer Science, Idaho State University, Pocatello, ID, USA
{arifaislamchampa,mdfazlerabbi,costainnachuma,minhazzibran}@isu.edu

ABSTRACT
The emergence of AI tools such as ChatGPT is being used to assist
with software development, but little is known of how developers
utilize these tools as well as the capabilities of these tools in soft-
ware engineering tasks. Using the DevGPT dataset, we conduct
quantitative analyses of the tasks developers seek assistance from
ChatGPT and how effectively ChatGPT addresses them. We also
examine the impact of initial prompt quality on conversation length.
The findings reveal where ChatGPT is most and least suited to assist
in the identified 12 software development tasks. The insights from
this research would guide the software developers, researchers,
and AI tool providers in optimizing these tools for more effective
programming aid.

KEYWORDS
ChatGPT conversation, software development tasks, task efficiency,
prompt quality
ACM Reference Format:
Arifa I. Champa, Md Fazle Rabbi, Costain Nachuma, Minhaz F. Zibran. 2024.
ChatGPT in Action: Analyzing Its Use in Software Development. In 21st
International Conference on Mining Software Repositories (MSR ’24), April
15–16, 2024, Lisbon, Portugal.

1 INTRODUCTION
The integration of Artificial Intelligence (AI) into the field of soft-
ware development represents a significant transformation, chang-
ing the traditional methods used in the industry. AI has been increas-
ingly utilized in various technical and creative problem-solving as-
pects [21], as seen in tools like ChatGPT, developed by OpenAI [31].
ChatGPT showcases the power of generative pre-trained transform-
ers [49] in comprehending and generating human-like text, making
it a versatile asset in software development [3, 37, 47].

AI tools like ChatGPT have gained prominence in software devel-
opment by assisting in tasks ranging from code generation [8, 24]
to decision-making processes [7, 39]. These tools are reshaping the
software development workflow, leading to increased efficiency
and productivity [41]. However, despite the widespread adoption of
AI tools in software development, there is a noticeable absence of
comprehensive academic research that delves into the specific ways
these tools are used in real-life scenarios. This research gap hinders
the optimization and full utilization of AI tools in this domain.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04. . . $15.00
https://doi.org/10.1145/3643991.3645077

Our study aims to explore how software developers use ChatGPT
in real-life situations. We want to understand what tasks they use
it for, how well it works for different types of tasks, and whether
the way they start a conversation affects its length. In our research,
we address the following three research questions (RQs):

RQ1:What types of tasks do software developers seek assistance
with from ChatGPT?
—Understanding these tasks can reveal the areas where ChatGPT
can help one the most. This will also highlight the current limita-
tions and guide future improvements of AI in software development.

RQ2: Are there any particular categories of tasks where the
developer-ChatGPT collaborations/conversations can result inmore
or less effective assistance from ChatGPT?
— By analyzing how effectively the developer-ChatGPT collabora-
tion/conversation yields solutions in various categories of software
development tasks, we can identify areas where it performs excel-
lently and areas that require further development. The findings will
also inform developers about the most reliable uses of AI assistants,
optimizing their workflow and reducing time spent on tasks that
are less suited for AI intervention.

RQ3: Does the quality of the initial prompt affect the efficiency
of developer-ChatGPT conversations/collaborations in completing
a task?
— Examining how the quality of the initial prompt influences the
length of ChatGPT conversations can provide valuable insights
into optimizing human-AI communication. We measure the initial
prompt quality in terms of sentence complexity, grammar errors,
and readability score. This understanding is crucial for improving
the user experience, enhancing the response accuracy of AI, and
reducing time spent in clarifying or correcting misunderstandings.

To address the above three RQs, we analyze 2,865 conversations
of software developers with ChatGPT in the DevGPT dataset, which
contains a total of 17,622 ChatGPT prompts.
2 DATASET
We use the publicly available DevGPT [48] dataset, which contains
a curated collection of JSON files derived from six different sources.
The sources are “GitHub Code File”, “GitHub Commit”, “GitHub
Issue”, “GitHub Pull Request”, “Hacker News”, and “GitHub Discus-
sion”. We take the ‘snapshot_20230914’ that we get on September
15, 2023. This snapshot comprises of 17,622 pairs of prompts and
answers in 2,865 conversations between developers and ChatGPT,
which include 12,031 code snippets written in diverse programming
languages.

Figure 1 summarizes the methodology of our study. Phase-0
includes the steps for extracting data from DevGPT. Each of the
six sources of DevGPT contains a ‘ChatGPTSharing’ attribute that
holds the ChatGPT conversations and the number of prompts in a
conversation along with other attributes. Each conversation in the
DevGPT dataset has three attributes: prompt, answer, and code-list
(from the answer). In the context of DevGPT, a ‘prompt’ represents

182

2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR)

MSR ’24, April 15–16, 2024, Lisbon, Portugal Arifa I. Champa, Md Fazle Rabbi, Costain Nachuma, Minhaz F. Zibran

Phase-1
Phase-0

 Extracted DataDevGPT

Source-1

Source-2

Source-6

ChatGPT
Sharing

Conversations

Code-List

Number of Prompts

Initial Prompt

First Answer

Code Snippets

Languages
Literature
Review

Zero-Shot
Classification

Category of
Tasks

Task-wise
Categorized

Conversations

Task-wise Most
Frequent
Language

Number of
Conversations in

Each Type of Task

Average
Number of

Prompts in Each
Type of Task

Task Efficiency
Analysis

 Prompt Quality
Scores

Normalization

 Normalized
Prompt Quality

Scores

Statistical Analysis

Correlation of
Number of Prompts
on Prompt Quality

Average Prompt
Quality Score

Phase-3Phase-2

Task-wise
Frequency of

Language Used

Figure 1: Procedural steps at different phases of our study

a user-input to ChatGPT, an ‘answer’ is the response from ChatGPT,
and code-list includes the collection of code snippets present in an
answer identified with the languages the snippets are written in.

For each of the 2,865 conversations from all of the six sources of
DevGPT, we extract the total number of prompts, the initial prompt,
the first answer, the list of any code snippets in the first answer,
and the language in which each of the code snippets is written in.

3 ANALYSIS AND FINDINGS
The steps outlined in Phase-1, Phase-2, and Phase-3 in Figure 1
correspond to our approach for addressing RQ1, RQ2, and RQ3,
respectively. We assume that each conversation between the de-
veloper and ChatGPT is meant to complete a task and we refer to
such a conversation as simply a ChatGPT conversation.

3.1 Tasks Requiring ChatGPT’s Assistance
To identify the types of tasks the developers mostly seek assis-
tance from ChatGPT, we first identify 12 categories of software
engineering tasks that are frequently discussed in the literature [3–
5, 9–11, 19, 23, 26, 27, 29, 42, 43, 45]. These task categories are
presented in the leftmost column of Table 1.

Table 1: Types of tasks developers present to ChatGPT
Types of Tasks Sim. CT* Lang. Usage (%)
Code Quality Management (CQM) 0.60 890 Python 23.21
Commit Issue Resolution (CIR) 0.59 488 Python 18.92
Documentation Generation (DG) 0.60 438 Shell 27.06
New Feature Implementation (NFI) 0.81 257 Shell 73.68
Code Manipulation and Generation (CMG) 0.81 241 Shell 53.14
Energy-aware Development (ED) 0.66 172 Shell 28.41
Testing and Quality Assurance (TQA) 0.79 119 Shell 35.94
Development and Environment Setup (DES) 0.70 119 Shell 32.43
Debugging and Error Management (DEM) 0.74 91 Shell 34.72
Code Learning (CL) 0.81 30 Shell 72.00
Security Management (SM) 0.68 15 Bash 40.00
Software Development Management and 0.47 5 None -
Optimization (SMO)

*Here, CT = number of conversations

3.1.1 Task-wise Categorization of Conversations. For each Chat-
GPT conversation, we determine what type of task is handled in
that conversation. Thus, we task-wise categorize the conversations
using the ‘facebook/bart-large-mnli’ model for zero-shot classi-
fication [12]. We choose zero-shot classification because it can
categorize fairly without needing pre-labeled data. Moreover, the
‘facebook/bart-large-mnli’ model is particularly suitable for our task
as it interprets and handles natural language tasks effectively [25].
For each conversation, the zero-shot classifier assigns a probability

score to indicate how likely it is that the conversation belongs to
a particular task category. Then, we associate each conversation
with the task category that has the highest probability score among
all the task categories.

If the categorization is correct, we expect that there will remain
some similarities among the initial prompts of the conversation
within a category. Hence, for each conversation pair within a task
category, we compute the pair-wise cosine similarity. Then, for each
type of task, we calculate the average of the computed pair-wise
cosine similarities. The average similarities of the tasks of each
type are presented in the second column from the left in Table 1.
The high scores for almost all types of tasks imply that the classi-
fier has correctly categorized the conversations. We also manually
check 20 randomly picked prompts to assess task-wise conversation
categorization and they seem to be assigned accurately. Thus the
correctness of the categorization is verified in the aforementioned
two ways.
3.1.2 Results. For each type of tasks, we compute the total number
of conversations that deal with the tasks of that type, as presented
in the third column in Table 1. We also identify the languages
most frequently used in each type of task upon computing the
frequency of all the languages used in that task. Task-wise most
frequent languages and the percentages of code snippets written
in the most frequent languages are shown in the rightmost two
columns of Table 1. For every type of task, we find only one most
frequent language except that no language is found for the software
development management and optimization task.

As seen in Table 1, code quality management and commit issue
resolution are the two types of tasks involving the highest number
of conversations, and both of these task types deal with source code
written in Python. The least number (05) of conversations deal with
software development management and optimization tasks. This
indicates that software developers seek the most assistance with
code quality management but they need minimum assistance from
ChatGPT in day-to-day software development management and
optimization tasks.

It is also interesting to find that, in nine of the 12 task categories
for which the developers seek assistance from ChatGPT, the most
frequently involved code snippets are written as bash or other kinds
of shell scripts. Based on the observations we derive the answer to
RQ1 as follows.
Ans. toRQ1: The software developers seek themost assistance from
ChatGPT while dealing with Python code in quality management
and commit issue resolution tasks. Across many different types of
tasks, they also commonly seek aid in dealing with shell scripting.

183

ChatGPT in Action: Analyzing Its Use in Software Development MSR ’24, April 15–16, 2024, Lisbon, Portugal

3.2 Task-wise Efficiency
Now that we have identified particular types of tasks in which the
developers seek the most assistance, the next question that arises
is how well ChatGPT assists in those tasks. If a task is resolved in a
short conversation involving only a few prompts, we can consider
the corresponding ChatGPT conversation to be efficient. Thus, for
each type of task, we compute the average number of prompts in a
conversation required to complete a task.

Table 2: Average number of prompts in each task category
Task # of Prompts Task # of Prompts
Type Avg. Std. Dev. Type Avg. Std. Dev.
SMO 2.80 1.30 ED 4.62 7.17
NFI 2.88 4.32 SM 5.13 6.12
CL 3.40 6.68 TQA 5.18 8.73
DEM 3.66 4.82 CQM 6.63 13.96
CIR 3.83 6.13 DG 11.03 20.84
CMG 4.02 7.72 DES 11.58 53.36

In Table 2, for each type of task, the average number of prompts
and the standard deviations are presented in the ascending order
of the average number of prompts. As seen in the table, the tasks
in SMO (Software Development Management and Optimization)
and NFI (New Feature Implementation) categories have the lowest
average number of prompts (2.8 and 2.88 respectively) as well as the
lowest standard deviation (1.3 and 4.32 respectively) compared to
other types of tasks. This implies that the tasks of these two types
are consistently accomplished efficiently with the help of ChatGPT.

On the contrary, the tasks in DES (Development and Environ-
ment Setup) and DG (Documentation Generation) categories on
average require more than 11 prompts, with very high standard
deviations of 53.36 and 20.84 respectively. These high numbers
of prompts along with the high standard deviations suggest in-
consistency and an extremely limited capacity of ChatGPT con-
versations/collaborations in completing the tasks. The task type
CQM (Code Quality Management) is also worth mentioning here.
The high standard deviation (13.96) for tasks of this type indicates
that the ChatGPT conversation efficiency substantially fluctuates
in completing tasks of this category. Based on the observations
discussed above, we now formulate the answer to RQ2 as follows.
Ans. to RQ2: Developer-ChatGPT conversation/collaboration is
the most efficient in achieving assistance with Software Devel-
opment Management and Optimization as well as New Feature
Implementation but the least efficient with Documentation Gener-
ation, Development and Environment Setup as well as Code Qual-
ity Management. For the tasks of the rest seven categories, fairly
efficient assistance is achieved from Developer-ChatGPT conversa-
tion/collaboration.

3.3 Impact of Prompt Quality on Efficiency
Oncewe have distinguished categories of tasks forwhich a developer-
ChatGPT conversation/collaboration can be the most and the least
efficient, it is now worth investigating if the quality of the ini-
tial prompt affects the efficiency of developer-ChatGPT conversa-
tions/collaborations in completing a task.
3.3.1 Metrics. To measure the quality of a ChatGPT prompt, we
use three metrics: readability score (RS), sentence complexity (SC),

and grammar errors (GE). Prompts having complex sentences and
grammar error scores can impose difficulty on ChatGPT in correctly
interpreting the developers’ questions and needs. A high readabil-
ity score indicates that a higher school grade level competency is
required to understand the text [34]. Therefore, lower scores of
these three metrics suggest better prompt quality. We compute the
scores of these three metrics to measure the quality of the initial
prompt in each developer-ChatGPT conversation.

To measure the readability score for the initial prompt in each
conversation, we first calculate individual scores using four distinct
readability tests: Flesch-Kincaid, SMOG Index, Coleman-Liau Index,
and Automated Readability Index [40]. Then, for each conversation,
we average these four scores to obtain a singular readability score.

Then we measure the complexity of each sentence in the initial
prompt in each conversation by first processing the text through a
neural network-based NLP pipeline, which includes tokenization,
part-of-speech tagging, dependency parsing, and named entity
recognition [44]. Then we calculate the average of the complexity
scores for all the sentences in the prompt.

In measuring grammar errors, an entire prompt is considered as a
single unit of text. Thus, for the initial prompt in each conversation,
we employ a rule-based system [32] that uses pattern matching
and linguistic rules to capture the total number of all detected
grammar errors.We utilize Spacy [33], ‘language_tool_python’ [32],
and Textstat Python package [34] to compute sentence complexity,
grammar errors, and readability score respectively. After computing
the aforementioned three metrics for each initial prompt, we apply
themin-max normalization [46] on them to scale the scores between
0.0 and 1.0. This is done to make the scores uniform and comparable,
regardless of their initial ranges.

3.3.2 Results. For each type of tasks, we calculate the average
readability scores for the initial prompts in all conversations in
tasks of the category. Similarly, we separately compute the task-
wise average sentence complexity scores and also the task-wise
average scores for grammar errors.

0.000

0.050

0.100

0.150

0.200

SMO NFI CL DEM CIR CMG ED SM TQA CQM DG DES

Sentence Complexity Grammar Errors Readability Score

Figure 2: Quality of initial prompts for each type of tasks

Figure 2 displays the task-wise averages of sentence complexity,
grammar errors, and readability scores. The consistently low scores
for sentence complexity and grammar errors across all task types
make it easier for ChatGPT to accurately interpret the questions and
requirements of the developers. Although the readability scores
across the types of tasks are consistently higher than those of
sentence complexity and grammar errors, the prompts possibly

184

MSR ’24, April 15–16, 2024, Lisbon, Portugal Arifa I. Champa, Md Fazle Rabbi, Costain Nachuma, Minhaz F. Zibran

remain easy to comprehensible to ChatGPT. The interesting part is,
no contrasting patterns of these three prompt quality metrics are
observed across the efficient and inefficient ChatGPT conversations
identified in Section 3.2.

Hence, we want to determine whether there is any correlation be-
tween the conversation length (measured in the number of prompts)
in each category of tasks and any of these three metrics. Recall that
the fewer the number of prompts (i.e., the shorter the conversation
length) in a developer-ChatGPT conversation, the more efficient the
collaboration is. So, we use mutual information [6], distance corre-
lation [46], and Spearman correlation [46] to measure any possible
correlation because our data do not exhibit normal distribution [46].

Table 3: Correlation - conversation length and prompt quality
Measures RS SC GE
Mutual Information 0.10 0.25 0.12
Distance Correlation 0.12 0.14 0.14
Spearman Correlation -0.06 -0.13 -0.05

Table 3 shows the three measures of conversation length’s corre-
lation with the three prompt quality metrics. Very low values of all
these correlation measures confirm that there exists no correlation
between the initial prompt quality and conversation length/efficiency.
Therefore, we derive the answer to RQ3 as follows:
Ans. to RQ3: The quality of the initial prompt does not affect the
efficiency of developer-ChatGPT conversations/collaborations in
completing a task.

4 THREATS TO VALIDITY
As we deal with unlabeled data in task-wise categorization of the
ChatGPT conversations, we depend on zero-shot learning using the
‘facebook/bart-large-mnli’ model. One may question the accuracy
of categorization achieved through this approach. However, this
method is known to be effective in natural language processing
tasks [25] such as ours. The cosine similarity-based verification and
our manual validation yield high confidence that the categorization
is accurate. In the computation of the usage of languages, the sizes
of the code snippets are disregarded because we have not observed
much variations in the sizes. The three prompt qualitymetricsmight
not be enough to sufficiently capture the quality of the prompts.

5 RELATEDWORK
ChatGPT is used for bug fixing, programming, maintaining code
quality, solving commit issues, documentation, and many other
tasks in software development [3, 4, 9–11, 23, 26, 27, 29, 37, 42, 43,
45]. Althoughmany aspects of software engineeringwere studied [1,
5, 13–18, 22, 28, 35, 38] in the past, studies of the role of generative
AI tools in the field are relatively new.

Some recent work studied the role of ChatGPT in software engi-
neering tasks such as bug fixing [10, 11, 42, 45], programming [4, 36],
while others focused on multiple tasks [3, 9]. Besides, some studies
assessed the efficiency of ChatGPT in providing assistance [20, 30],
while some researchers conducted comparative studies of Chat-
GPT with other similar systems in assisting software development
tasks [2, 23, 43].

Fraiwan et. al. [9] reported that ChatGPT could help develop-
ers in generating code, debugging, and software testing. However,

it performed poorly in detecting code vulnerabilities. Sridhara et
al. [43] explored how ChatGPT can be used to help with several
software engineering tasks. They found that even though Chat-
GPT performed very well on tasks such as code summarization and
code clone detection, it performed poorly in vulnerability detection.
Their study is based on only 10 samples for each task. Our study is
substantially larger. In our study, we used 2,865 ChatGPT conversa-
tions where each task category includes way more than 10 samples
(except for software development management and optimization
tasks).

Biswas et. al. [4] reported ChatGPT as a powerful tool for pro-
gramming tasks such as code completion, code correction, code
suggestion, automatic syntax error fixing, code optimization, refac-
toring, and chatbot development. The feasibility and efficiency
of ChatGPT in debugging assistance, bug prediction, and bug ex-
planation to assist in solving programming bugs were studied by
Surameery et. al. [45]. Sobania et. al. [42] showed that ChatGPT
can resolve software bugs to a similar extent as sophisticated deep
learning systems.

Unlike the aforementioned studies, we have distinguished the
tasks in which the developers seek assistance of ChatGPT the most
and the least; in which tasks developer-ChatGPT conversations
are efficient and where inefficient. Thus, we identify how develop-
ers can effectively leverage ChatGPT and where ChatGPT needs
improvement to better assist in software engineering tasks.

6 CONCLUSION
This paper presents a quantitative study of the software develop-
ment tasks where developers seek assistance from ChatGPT and
how efficiently such tasks are completed through the developer-
ChatGPT conversations/collaborations. Among the 12 categories of
tasks studied in our work, code quality management and commit
issue resolution are the two types of tasks in which the develop-
ers seek the most assistance from ChatGPT, especially in dealing
with Python code. Across all types of tasks, assistance with shell
scripting is sought the most from ChatGPT.

We find that developer-ChatGPT conversations/collaborations
are the least efficient in dealing with tasks related to development
environment setup, documentation generations, and code quality
management. Thus, AI tools such as ChatGPT need to improve in
these areas. The conversations/collaborations are found the most
efficient in completing tasks associated with software development
management and optimization as well as new feature implementa-
tion. Hence, developers can leverage AI tools such as ChatGPT in
dealing with such tasks.

The findings are derived from thorough quantitative analyses
of 2,865 distinct developer-ChatGPT conversations in the DevGPT
dataset’s ‘snapshot_20230914’ including 12,031 code snippets writ-
ten in diverse languages. In the future, we will expand this work
with qualitative analyses to capture deeper insights into the lim-
itations and potential of AI tools in aiding software engineering
tasks.

ACKNOWLEDGEMENT
This work is supported in part by the ISU-CAES Seed Grant at the
Idaho State University, USA.

185

ChatGPT in Action: Analyzing Its Use in Software Development MSR ’24, April 15–16, 2024, Lisbon, Portugal

REFERENCES
[1] D. Alwad, M. Panta, and M. Zibran. 2018. An Empirical Study of the Relation-

ships between Code Readability and Software Complexity. In 27th International
Conference on Software Engineering and Data Engineering. 122–127.

[2] Elissa Arias Sosa and Marco Godow. 2023. Comparing Google and ChatGPT as
Assistive Tools for Students in Solving Programming Exercises.

[3] Adna Beganovic, Muna Abu Jaber, and Ali Abd Almisreb. 2023. Methods and Ap-
plications of ChatGPT in Software Development: A Literature Review. Southeast
Europe Journal of Soft Computing 12, 1 (2023), 08–12.

[4] Som Biswas. 2023. Role of ChatGPT in Computer Programming.: ChatGPT in
Computer Programming. Mesopotamian Journal of Computer Science 2023 (2023),
8–16.

[5] A. Champa, M. Rabbi, M. Zibran, and M. Islam. 2023. Insights into Female
Contributions in Open-Source Projects. In 20th IEEE International Conference on
Mining Software Repositories. 357–361.

[6] Arifa Islam Champa, SMMahedy Hasan, Md Atikur Rahman, and Md Fazle Rabbi.
2020. Hybrid technique for classification of hyperspectral image using quadratic
mutual information. In 2020 IEEE Region 10 Symposium (TENSYMP). 933–936.

[7] Juan Dempere, Kennedy Prince Modugu, Allam Hesham, and Lakshmana Ra-
masamy. 2023. The impact of ChatGPT on higher education. Dempere J, Modugu
K, Hesham A and Ramasamy LK (2023) The impact of ChatGPT on higher education.
Front. Educ 8 (2023), 1206936.

[8] Yunhe Feng, Sreecharan Vanam, Manasa Cherukupally, Weijian Zheng, Meikang
Qiu, and Haihua Chen. 2023. Investigating Code Generation Performance of Chat-
GPT with Crowdsourcing Social Data. In Proceedings of the 47th IEEE Computer
Software and Applications Conference. 1–10.

[9] Mohammad Fraiwan and Natheer Khasawneh. 2023. A Review of ChatGPT
Applications in Education, Marketing, Software Engineering, and Healthcare:
Benefits, Drawbacks, and Research Directions. arXiv preprint arXiv:2305.00237
(2023).

[10] Haotong Ge and YuemengWu. 2023. An Empirical Study of Adoption of ChatGPT
for Bug Fixing among Professional Developers. Innovation & Technology Advances
1, 1 (2023), 21–29.

[11] Md Asraful Haque and Shuai Li. 2023. The Potential Use of ChatGPT for Debug-
ging and Bug Fixing. EAI Endorsed Transactions on AI and Robotics 2, 1 (2023),
e4–e4.

[12] Hugging Face. 2023. facebook/bart-large-mnli. https://huggingface.co/facebook/
bart-large-mnli. (Verified: Oct 2023).

[13] M. Islam and M. Zibran. 2016. A Comparative Study on Vulnerabilities in Cate-
gories of Clones and Non-Cloned Code. In 10th IEEE Intl. Workshop on Software
Clones. 8–14.

[14] M. Islam and M. Zibran. 2016. Exploration and Exploitation of Developers’
Sentimental Variations in Software Engineering. Internation Journal of Software
Innovation 4, 4 (2016), 35–55.

[15] M. Islam and M. Zibran. 2018. On the Characteristics of Buggy Code Clones: A
Code Quality Perspective. In 12th IEEE Intl. Workshop on Software Clones. 23 –
29.

[16] M. Islam and M. Zibran. 2020. How Bugs Are Fixed: Exposing Bug-fix Pat-
terns with Edits and Nesting Levels. In 35th ACM/SIGAPP Symposium on Applied
Computing. 1523–1531.

[17] M. Islam and M. Zibran. 2021. What Changes in Where? An Empirical Study
of Bug-Fixing Change Patterns. ACM Applied Computing Review 20, 4 (2021),
18–34.

[18] M. Islam, M. Zibran, and A. Nagpal. 2017. Security Vulnerabilities in Categories
of Clones and Non-Cloned Code: An Empirical Study. In 11th ACM/IEEE Intl.
Symposium on Empirical Software Engineering and Measurement. 20–29.

[19] Md Rakibul Islam and Minhaz F Zibran. 2016. Exploration and exploitation of
developers’ sentimental variations in software engineering. International Journal
of Software Innovation (IJSI) 4, 4 (2016), 35–55.

[20] Sajed Jalil, Suzzana Rafi, Thomas D LaToza, Kevin Moran, and Wing Lam. 2023.
Chatgpt and software testing education: Promises & perils. In 2023 IEEE Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW). 4130–4137.

[21] Srecko Joksimovic, Dirk Ifenthaler, Rebecca Marrone, Maarten De Laat, and
George Siemens. 2023. Opportunities of artificial intelligence for supporting com-
plex problem-solving: Findings from a scoping review. Computers and Education:
Artificial Intelligence (2023), 100138.

[22] R. Joseph, M. Zibran, and F. Eishita. 2021. Choosing the Weapon: A Comparative
Study of Security Analyzers for Android Applications. In Intl. Conference on
Software Engineering, Management and Applications. 51–57.

[23] Samia Kabir, David N Udo-Imeh, Bonan Kou, and Tianyi Zhang. 2023. Who An-
swers It Better? An In-Depth Analysis of ChatGPT and Stack Overflow Answers
to Software Engineering Questions. arXiv preprint arXiv:2308.02312 (2023).

[24] Muhammad Fawad Akbar Khan, Max Ramsdell, Erik Falor, and Hamid Karimi.
2023. Assessing the Promise and Pitfalls of ChatGPT for Automated Code Gener-
ation. arXiv preprint arXiv:2311.02640 (2023).

[25] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461 (2019).

[26] Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian,
Hao He, Antong Li, Mengshen He, Zhengliang Liu, et al. 2023. Summary of
chatgpt-related research and perspective towards the future of large language
models. Meta-Radiology (2023), 100017.

[27] Wei Ma, Shangqing Liu, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang, Liming
Nie, and Yang Liu. 2023. The Scope of ChatGPT in Software Engineering: A
Thorough Investigation. arXiv preprint arXiv:2305.12138 (2023).

[28] D. Murphy, M. Zibran, and F. Eishita. 2021. Plugins to Detect Vulnerable Plugins:
An Empirical Assessment of the Security Scanner Plugins for WordPress. In Intl.
Conference on Software Engineering, Management and Applications. 39–44.

[29] Nathalia Nascimento, Paulo Alencar, and Donald Cowan. 2023. Comparing
Software Developers with ChatGPT: An Empirical Investigation. arXiv preprint
arXiv:2305.11837 (2023).

[30] Nascimento Nathalia, Alencar Paulo, and Cowan Donald. 2023. Artificial Intelli-
gence vs. Software Engineers: An Empirical Study on Performance and Efficiency
using ChatGPT. In Proceedings of the 33rd Annual International Conference on
Computer Science and Software Engineering. 24–33.

[31] OpenAI. 2023. ChatGPT. Retrieved October 2023 from https://openai.com/
chatgpt/

[32] PyPI. 2023. language-tool-python 2.7.1 Project description. Retrieved October 2023
from https://pypi.org/project/language-tool-python/

[33] PyPI. 2023. spacy 3.7.2 Project description. Retrieved October 2023 from https:
//pypi.org/project/spacy/

[34] PyPI. 2023. textstat 0.7.3 Project description. Retrieved October 2023 from
https://pypi.org/project/textstat/

[35] Md Fazle Rabbi, Arifa I. Champa, Costain Nachuma, and Minhaz F. Zibran. 2024.
SBOM Generation Tools Under Microscope: A Focus on the npm Ecosystem. In
Proceedings of ACM Symposium on Applied Computing (SAC 2024).

[36] Md Fazle Rabbi, Arifa I. Champa, Minhaz F. Zibran, and Md Rakibul Islam. 2024.
AI Writes, We Analyze: The ChatGPT Python Code Saga. In Proceedings of ACM
International Conference on Mining Software Repositories (MSR 2024).

[37] Wahyu Rahmaniar. 2023. Chatgpt for software development: Opportunities and
challenges. (2023).

[38] A. Rajbhandari, M. Zibran, and F. Eishita. 2022. Security Versus Performance
Bugs: How Bugs are Handled in the Chromium Project. In Intl. Conference on
Software Engineering, Management and Applications. 70–76.

[39] Thomas Ramge and Viktor Mayer-Schonberge. 2023. Using ChatGPT to Make
Better Decisions. RetrievedNovember 27, 2023 fromhttps://hbr.org/2023/08/using-
chatgpt-to-make-better-decisions/

[40] Tanya Serry, Tonya Stebbins, Andrew Martchenko, Natalie Araujo, and Brigid
McCarthy. 2023. Improving access to COVID-19 information by ensuring the
readability of government websites. Health Promotion Journal of Australia 34, 2
(2023), 595–602.

[41] Inbal Shani and GitHub Staff. 2023. Survey reveals AI’s impact on the developer
experience. Retrieved October 29, 2023 from https://github.blog/2023-06-13-
survey-reveals-ais-impact-on-the-developer-experience/

[42] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
analysis of the automatic bug fixing performance of chatgpt. arXiv preprint
arXiv:2301.08653 (2023).

[43] Giriprasad Sridhara, Sourav Mazumdar, et al. 2023. ChatGPT: A Study on its
Utility for Ubiquitous Software Engineering Tasks. arXiv preprint arXiv:2305.16837
(2023).

[44] Bhargav Srinivasa-Desikan. 2018. Natural Language Processing and Computational
Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and
Keras. Packt Publishing Ltd.

[45] Nigar M Shafiq Surameery and Mohammed Y Shakor. 2023. Use chat gpt to solve
programming bugs. International Journal of Information Technology & Computer
Engineering (IJITC) ISSN: 2455-5290 3, 01 (2023), 17–22.

[46] Gábor J Székely and Maria L Rizzo. 2023. The energy of data and distance correla-
tion. CRC Press.

[47] MuhammadWaseem, Teerath Das, Aakash Ahmad, Mahdi Fehmideh, Peng Liang,
and Tommi Mikkonen. 2023. Using ChatGPT throughout the Software Develop-
ment Life Cycle by Novice Developers. arXiv preprint arXiv:2310.13648 (2023).

[48] Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2024. De-
vGPT: Studying Developer-ChatGPT Conversations. In Proceedings of the Inter-
national Conference on Mining Software Repositories (MSR 2024).

[49] Gokul Yenduri, Gautam Srivastava, Praveen Kumar Reddy Maddikunta, Rutvij H
Jhaveri, Weizheng Wang, Athanasios V Vasilakos, Thippa Reddy Gadekallu,
et al. 2023. Generative Pre-trained Transformer: A Comprehensive Review on
Enabling Technologies, Potential Applications, Emerging Challenges, and Future
Directions. arXiv preprint arXiv:2305.10435 (2023).

186

