
Security Versus Performance Bugs:
How Bugs are Handled in the Chromium Project

Amrit Rajbhandari
University of New Orleans, USA

arajbhan@uno.edu

Minhaz F. Zibran
Idaho State University, USA

MinhazZibran@isu.edu

Farjana Z. Eishita
Idaho State University, USA

FarjanaEishita@isu.edu

Abstract—Bug fixing is a very important activity of software
maintenance. Given the recent highlight on security and privacy,
one may expect that the software vendors would give security
bugs a higher priority in their bug fixing process. In this paper,
we present an exploratory study of different categories (i.e.,
security, performance, and other) of bugs in the maintenance of
the Chromium browser. In particular, we study the phenomena
such as how much time is spent in bug triage, how fast different
types of bugs are fixed, variations of developers’ experiences who
fix those bugs, and show often those fixed bugs are reopened.

We find that the performance bugs are triaged and fixed
faster. Security bugs, for fixing, are assigned to more experienced
developers. All categories of bugs are almost equally reopened
once closed.

Index Terms—Security, Vulnerability, Performance, Bug, De-
fect, Chromium, Browser, Empirical Study

I. INTRODUCTION

Technology today rarely exists without a software compo-
nent or interface as more and more systems are being software
operated. But, incidents of software failures and vulnerabili-
ties repeatedly make news headlines since the emergence of
software to date. In 2017 alone, almost $1.7 trillion in assets,
and 3.7 billion people were affected by software failures [5],
[14]. This is fact despite bug-fixing activities consume a vast
amount of total expenses in software maintenance [3] while
nearly 80% of software cost is spent in maintenance [8].

With the increasing concern of cybersecurity and the ex-
panding ubiquity of web applications and web services, the
security and performance of web browsers demand more
attention than before. Thus, in the bug fixing activities, at least
for the web browser projects, the security bugs can be expected
to be treated with higher priority. But the question remains,
is it the case in practice? Program traits such as security
and performance are often not considered within the func-
tional requirements. Thus, software bugs related to such non-
functional qualities might be given lower priorities as keeping
the software product feature-rich with new functionalities often
remains the main goal in practice.

In the light of these two possibilities and more, in this paper,
we present an empirical study of the bug fixing activities
in the maintenance of the Chromium browser project. We
compare and contrast among the security bugs, performance
bugs, and other bugs. For these different categories of bugs,
we, in particular, examine different phenomena such as how

much time is spent in bug triage, how fast the bugs are fixed,
how experience are the developers who fix those bugs, and
how often bugs are reopened after they are fixed, verified, and
closed.

Thus, with respect to the three categories (i.e., security,
performance, other) of Chromium bugs, we formulate the
following research questions to address in this paper.

RQ1: Which category of bugs are fixed faster and which
category of bugs take longer time to be fixed?
An answer to this research question will inform us
about which bugs in the Chromium project is fixed
with higher priorities.

RQ2: Which category of bugs are fixed by more experi-
enced developers?
An answer to this research question will give us an
idea about which categories of bugs are consuming
the most experienced developers.

RQ3: Which operating system (OS) platforms trigger ma-
jority of the bugs and which category of bugs trig-
gered on which platform take longer to be fixed?
An answer to this research question will advance
our understanding of which OS platforms are more
problematic for the Chromium browser and thus may
require extra attention by the developers.

The insights drawn from the answers to all these research
questions collectively will help the Chromium developers in
restructuring their bug-fixing strategies (e.g., bug prioritiza-
tion, bug assignment, test emphasis) to better fit their goal.
The findings will also be useful for similar software projects
in defining strategies for defect management.

The rest of the paper is organized as follows. Section II
describes the methodology of our study. The findings derived
from qualitative and quantitative analyses are presented in
Section III. In Section IV, we discuss the possible threats to
the validity of the results. Section V discusses other studies
related to this work. Finally, Section VI concludes the paper.

II. METHODOLOGY

We address the research questions by studying Chromium
bug reports. As mentioned before, the methodology of our
study is very similar to that of the work of Zaman et al. [15].
The procedural steps of our work are briefly summarized in
Figure 1.

978-1-6654-8350-6/22/$31.00 ©2022 IEEE
SERA 2022, May 25-27, 2022, Las Vegas, USA

70

Chromium
Bug Repository

Classification
of Bugs

Fixed

Security Bugs

Verified

Won’t Fix

Fixed

Performance Bugs

Verified

Won’t Fix

Fixed

Other Bugs

Verified

Won’t Fix

Computation of
Metrics Analysis Findings

Mining Bug
Reports

Fig. 1. Procedural steps of our empirical study

A. Collection of Bug Reports

For this study on bugs, we obtain bug reports from
the Chromium bug repository [2]. On this bug repository’s
‘search’ field, we use the following search criteria for selecting
a subset of bugs from “all issues”:

status:Fixed,Verified,WontFix
opened>2012/5/22 opened<2020/11/29

With these criteria, we are able to obtain only those bug
reports, which satisfy the following two specifications: (a) the
bug report posted/opened between May 21, 20121 and Nov 28,
2020, (b) the bug reports having official status ‘Fixed’, ‘Ver-
ified’, or ‘WontFix’ (i.e., Won’t Fix). The Chromium project
bug reporting guideline [1] describes these three categories of
closed bugs as follows:

• Fixed: “Fixed.”
• Verified: “The fix has been verified by test or by the

original reporter.”
• WontFix: “Covers all the reasons we chose to close

the bug without taking action (can’t repro, working as
intended, obsolete).”

We collect total 189,668 closed bug reports among which
59,555 are ‘Fixed’ bugs, 65,864 are ‘Verified’ bugs, and the
rest 64,249 are ‘WontFix’ bugs.

Figure 2 presents an example search result containing bug
posts for four bugs. In Chromium bug repository, some bugs
are labeled with some tags (‘AllLabels’ column in Figure 2).
Some bug reports also include information about the operating
system (OS) platforms on which the bugs are triggered (‘OS’
column in Figure 2). For example, the bug with ID 1153450
is triggered on the Android OS only. The bug 1153437 is
triggered on Linux, Windows, and Mac OS only, while the
bug 129102 is triggered on all OS platforms.

1It may appear that the above search criteria would include bugs opened
after May 22, 2012. But actually, with the first date in the search criteria, we
obtain bugs opened on May 21, 2012 or afterwards. We did not investigate
the reason.

B. Classification of Bugs

As mentioned before, for the bugs reported in the Chromium
bug repository, there is a keyword-based labelling/tagging
mechanism (‘AllLabels’ column in Figure 2), which are used
in documenting different aspects of the bugs.

TABLE I
CRITERIA FOR BUG CLASSIFICATION

For Security Bugs For Performance Bugs

• Review-Security
• Security Impact-Stable
• A11ySecurityUIQ12020
• Security
• Security Severity-Low
• Security Impact-None
• Security Severity-Medium
• Security severity-None
• Team-Security-UX
• Hotlist-WebAppInstalls-

Security
• Via-Wizard-Security
• Security Impact-Head

• CrOSFilesCategory-
Performance

• Performance-Loading
• Performance-Size
• Performance-Power
• Performance-Sheriff
• Performance-Startup
• Performance-Battery
• Performance-Memory
• Performance-Tool
• ntp-epic-performance
• Performance-Sheriff-

Feedback
• Performance
• Performance-Responsiveness
• Test-Performance
• Performance-Browser
• Performance-Media
• Performance-Sheriff-V8
• Performance-Sheriff-

BotHealth

TABLE II
BUGS OF DIFFERENT CATEGORIES AND STATUS

Bug Category Fix Status Count

Security Bugs

Fixed 1,934
Verified 4,177
Won’t Fix 3,562
All 9,673

Performance Bugs

Fixed 2,410
Verified 1,146
Won’t Fix 1,2481
All 16,037

Other Bugs

Fixed 55,211
Verified 60,541
Won’t Fix 48,206
All 163,958

All bugs across all three categories 189,668

For classifying the bugs into one of the three categories
(i.e., security, performance, or other), we use the keywords
presented in Table I. If any of the terms in the left column
of the table is found in the title (i.e., “Summary+Labels”
column in Figure 2), description, or ‘AllLabels’ tags of a
bug report, the corresponding bug is classified as a security
bug. A particular bug is classified as a performance bug,
when any of the term in the right column is found in the
title, description, or ‘AllLabels’ tags of the corresponding bug
report. For example, the bug with id 1153449 in Figure 2 is
identified as a performance bug as the ‘AllLabels’ tags for this
bug include ‘performance-sheriff’. A bug is classified
as “other bugs” when it is classified neither as a security bug
nor a performance bug. In Table II, we present the number

71

Fig. 2. Examples of Chromium Bug Reports

of all these three categories of bugs along with their fix status
(i.e., ‘Fixed’, ‘Verified’ or ‘WontFix’).

Issue

+IssueId
Status
OpenedTimestamp
LocalId
ProjectName
OwnerModifiedTimestamp
StarCount
ModifiedTimestamp
Summary
StatusModifiedTimestamp
ClosedTimestamp
ComponentModifiedTimestamp

Comment

+CommentId
LocalId
Content
ProjectName
SequenceNum
DescriptionNum
Timestamp

IssueLabel

+IssueLabelId
IssueId
Label

IssueReference

+IssueReferenceId
IssueId
DisplayName
UserId

Commenter

+CommenterId
CommentId
DisplayName
UserId

IssueFieldValue

+IssueFieldValueId
IssueId
Name
Value

IssueReporter

+IssueReporterId
IssueId
DisplayName
UserId

Amendment

+AmendmentId
FieldName
OldValue
NewOrDeltaValue
CommentId

Fig. 3. ER Diagram of the Database Presenting the Information Captured

Each of the bug reports are then further parsed to extract
detailed information, which are then stored in a database for
further analysis. Figure 3 shows the Entity-Relationship (ER)
diagram that presents the database schema and the attributes
for persistence. Primary keys for each database relation/table
is identified with bold font and a ‘+’ symbol to the left.

III. ANALYSIS AND FINDINGS

In this section, we describe our approach for analyzing the
collected information about the reported bugs and the findings
from the analyses in terms of answers to the research questions
formulated before in Section I.

A. Time Required to Triage and Fix Bugs
The stages in the life of a bug starts from its initiation at

the point of identification to the date when the bug report is

closed. Figure 4 summarizes these stages in the life of a bug
in case of the Chromium project.

In accordance with the the Chromium “Bug Life Cycle and
Reporting Guidelines” [1], the ‘Fixed’ and ‘Verified’ stages are
described in Section II-A. The remaining stages are described
as follows:

• Unconfirmed: “The default for public bugs. Waiting for
someone to validate, reproduce, or otherwise confirm that
this is a bug.”

• Untriaged: “A confirmed bug that has not been reviewed
for priority or assignment. This is the default for project
members’ new bugs.”

• Available: “Confirmed and triaged, but not assigned. Feel
free to take these bugs!”

• Assigned: “In someone’s work queue.”
• Started: “Actively being worked on.”
Typically, there is lag in the movement of bugs between

stages and substantial time also elapses when a bug remain in
a stage while it is worked on by one or more developers.

Metrics: For the purpose of quantitative analysis, we define
the following metrics:

• Time-to-Fix: is the time elapsed during a bug’s transition
from the beginning of ‘assigned’ stage to the beginning
of ‘fixed’ state.

• Triage Time: is the time elapsed during a bug’s transition
from ‘untriaged’ stage to ‘available’ stage. During this
period, a bug is reviewed for prioritization and possible
assignment to developers who would be responsible to
fix this bug.

• Reopen Count: is the number of times a bug is reopened.
In measuring the time-to-fix and triage time, we measure both
the total time required to fix a bug and the average time of each
fix attempt in case the bugs closed prematurely are reopened.

1) Time to Fix: In Table III, we present the total and
average time (time-to-fix) in hours taken by the three cate-

72

Unconfirmed Untriaged Assigned Started Fixed Verified Available

Fig. 4. Different Stages of a Typical Chromium Bug’s Life

TABLE III
AVERAGE TIME TAKEN TO FIX DIFFERENT TYPES OF BUGS

Chromium Bugs Time (hours) Taken to be Fixed
Type Count Total Average Median St. Dev.
Security 1,934 2742642 1418 303.0 2869.80
Performance 2,410 3063376 1271 259.5 2549.18
Other Bugs 5,5211 87629837 1587 309.0 2957.72

gories (i.e., security, performance, and other) of bugs we have
studied. As can be noticed in Table III, the performance bugs
are found to have taken the shorter time on average to be fixed
compared to the security bugs. The median time-to-fix for the
performance bugs is also lower than that for the security bugs.
The bugs other than security and privacy are found to have
taken the longest time to be fixed.

TABLE IV
AVERAGE TIME-TO-FIX FOR BUGS FIXED IN 30 OR FEWER DAYS

Chromium Bugs Time (hours) Taken to be Fixed
Type Count Total Average St. Dev.
Security 1285 270967 210 188.67
Performance 1671 332438 198 185.90
Other Bugs 34732 6834552 196 192.76

2) Time to Fix in 30-Days Window: The high standard
deviations (in the right-most column in Table III) encourages
us to examine those bugs over a shorter 30-days window from
the date the bugs were reported (i.e. bug reports opened)
and entered into the ‘unconfirmed’ stage. Within this 30-
days window, the total number of bugs fixed as well as the
average time-to-fix for each categories of bugs are presented
in Table IV. As noticed, the results in Table IV remains partly
consistent with the results in Table III. That is, within the 30-
days window, the performance bugs are still found to have
been fixed faster than the security bugs, but the other bugs are
found to have taken the shortest time to be fixed.

3) Triage Time: To have a better understanding of where
much of the time is spent in the bug-fixing process, we
examine the triage time spent for the three categories of bugs.

TABLE V
AVERAGE TRIAGE TIME FOR FIXING DIFFERENT TYPES OF BUGS

Chromium Bugs Time (hours) Taken to be Fixed
Type Count Total Average St. Dev.
Security 1934 2735112 1414 2888.43
Performance 2410 2957948 1227 2484.62
Other Bugs 55211 85315819 1545 2925.44

Table V presents the time in hours required on average for
triaging each categories of bugs. As seen in the table, on
average, the performance bugs are found to have taken the
least time in triage followed by the security bugs.

TABLE VI
AVERAGE TRIAGE TIME FOR BUGS FIXED IN 30 OR FEWER DAYS

Chromium Bugs Time (hours) Taken to be Fixed
Type Count Total Average St. Dev.
Security 1285 307500 239 494.47
Performance 1671 324310 194 188.39
Other Bugs 34732 6841613 196 273.07

Again, driven by the high standard deviation (in the right-
most column in Table V), we further investigate the triage time
for only those bugs, which are fixed in a 30-days period from
their opening. The average triage time taken by these bugs are
present in Table VI. These results are in sync with the time-
to-fix results in Table IV for bugs fixed in 30-days window.
For the bugs fixed in 30-days period, the performance bugs
are found to have been triaged faster than the security bugs,
but the other bugs are found to have taken the shortest time
in triage.

4) Reopen Count: It is found in the Chromium bug repos-
itory that sometimes closed bugs are reopened later typically
when the associated bug resurfaces. For such bugs, our time-
to-fix and triage-time metrics include the average of the
periods between multiple openings and closures. Thus, results
about time-to-fix and triage time presented before might have
been affected by reopened bugs. We therefore, compute how
many of each categories of bugs are reopened (i.e., opened
more than once).

TABLE VII
NUMBER OF TIMES BUGS ARE REOPENED

Chromium Bugs Reopened
Type Count Total Percentage
Security 1934 21 1.09%
Performance 2410 30 1.24%
Other Bugs 55211 623 1.13%

In Table VII, we present the number of reopened bugs
of each category. As expected, for all categories, only a
small percentage (i.e., below 2%) of bugs are reopened. The
percentage of reopened security bugs is slightly higher than
the that of the reopened performance bugs.

TABLE VIII
NUMBER OF TIMES BUGS REOPENED IN 30 OR FEWER DAYS

Chromium Bugs Reopened
Type Count Total Percentage
Security 1285 10 0.78%
Performance 1671 26 1.56%
Other Bugs 34732 325 0.94%

Table VIII presents the number and percentage of bugs
that are found to have (closed and) reopened within the 30-

73

days period from their first appearance. Within this 30-days
window, the percentage of reopened performance bugs is found
the highest, while the percentage of the reopened security bugs
is found the lowest.

Indeed, the differences in the percentages of reopened bugs
of different categories (as presented in Table VII and in
Table VIII) are very small (i.e., less than 1%) and thus can be
considered not significant. We now answer the first research
question (i.e., RQ1) as follows:

Ans. to RQ1: Overall, performance bugs are triaged and
fixed faster than security bugs in the Chromium project.

A probable explanation to this could be that the performance
bugs are fixed faster with higher priorities because such bugs
directly and frequently affect the end-users’ experience, which
a software vendor cares with immense importance.

B. Developers’ Experience in Fixing the Bugs
Every bug, to be fixed correctly and efficiently, needs to be

assigned to the developers with correct expertise. It is among
the most important parts of bug fixing process. Each type of
bugs has their own specifications and knowledge requirement
for accurate execution for resolving the defects. Performance
bugs require the depth of knowledge of the software system,
compilation tool chain, execution bottleneck, and memory
management in the least. Security bugs require a thorough
understanding of possible security loopholes in the source
code, in the used resources (e.g., third-party libraries) and
in the operating system (OS) platform, on which the system
under development is expected to function.

Metrics: Similar to the studies of Imseis et al. [7] and Zaman
et al. [15], to estimate a developer’s bug-fixing experience in
terms of the number of bugs previously fixed by the developer.
Based on this, for the bugs in each category, we compute the
average developer experience.

TABLE IX
DEVELOPERS’ EXPERIENCE (# OF PREVIOUSLY FIXED BUGS)

Bug Type # of Distinct Cumulative # of Average
Developers Previously Fixed Expertise

Security 108 1728 16.00
Performance 169 2259 13.37
Other Bugs 1488 9216 6.19

1) Results: In the rightmost column of Table IX, we present
the average experience of the developers having fixed the three
different categories of bugs. As seen in the table, the average
experience of the developers who fixed the security bugs is the
higher than that of the developers who fixed the performance
bugs. Average experience of the developers who fixed the other
bugs is the lowest by a substantial margin.

Again, we examine if the same trend sustains when we
consider only those bugs, which are fixed in 30 or fewer days.
The developers’ average experience for these bugs fixed in
this short time frame is presented in Table X. As can be
noticed, the results in this table is still consistent with the

TABLE X
DEVELOPERS’ EXPERTISE FOR BUGS FIXED IN 30 OR FEWER DAYS

Bug Type # of Distinct Cumulative # of Average
Developers Previously Fixed Expertise

Security 74 1385 18.72
Performance 145 2109 14.54
Other Bugs 1256 8707 6.93

results in Table IX. We, therefore, present the answer to the
second research question (i.e., RQ2) as follows:

Ans. to RQ2: On average, more experienced developers
are involved in fixing security bugs compared to the perfor-
mance bugs or other bugs in the Chromium project.

A likely explanation to this finding is that the security bugs
are typically more complex for pinpointing the defect and
difficult to test rather than other bugs. Moreover, the haste
to close the security issues might also cause decline in due
diligence required, which, in software engineering practice,
often delay the process.

C. The Role of Operating System Platform
A software application working well on a particular plat-

form often display buggy behavior when operated on another
platform or environment. Which is why, modern software
processes often include a ‘staging’ phase where the software
system is executed, operated, and tested on its target operating
system (OS) platform and environment.

0

2000

4000

6000

8000

10000

12000

Android Apple Chrome Fuchsia Linux Windows

Sum of Bug Count by OS

Fig. 5. Prevalence of Chromium Bugs on Different Operating Systems

Thus, we want to identify the OS platforms, on which
the most bugs of the Chromium browser is exposed. Unfor-
tunately, for a large portion (39.58%) of the reported bugs,
the bug reports do not record the OS on which the bugs are
triggered. For example, for the bug 1153449 in Figure 2, the
OS information is not recorded. Hence, this part of our study
focusing on the OS includes only those bugs for which the
triggering OS platforms are recorded.

By parsing each bug report, we extract the information
about which OS platform is affected by the corresponding bug.
Figure 5 presents the number of Chromium bugs prevalent
in different operating platforms. Each platform includes all
bugs affecting all different hardware hosting the platform. For
example, all bugs affecting the iOS, iPadOS, and MacOS are
aggregated in Apple platform. Likewise, all bugs affecting

74

Fig. 6. Average Time (hours) Taken to Fix Different Categories of Bugs Triggered on Different Operating System Platforms

the Android operated devices (e.g., cell phones, tablets) are
aggregated under the Android platform.

1) Results: For each OS, we compute how many of the
bugs are triggered on the OS. Recall that, a particular bug
can be triggered on more than one OS. For example, the
bug 1153437 is triggered on Linux, Windows, and Apple
(Mac) OS. As seen in Figure 5, Chromium bugs are the most
prevalent on the Google Chrome OS, which means the Chrome
OS platform triggers most of the bugs. Chromium bugs are the
least prevalent on the Fuchsia OS possibly due to comparative
smaller user base for this particular OS.

We further slice each of the three categories (i.e., security,
performance, and other) of bugs based on the OS platforms
on which they are triggered. Based on this additional OS-
specific categorization, we plot (in Figure 6) the average time
taken by each categories of bugs to be fixed. As seen in
Figure 6, the performance bugs triggered on the Fuchsia and
Apple platforms take the lengthiest time to be fixed, while the
security bugs triggered on Fuchsia and Chrome OS are fixed
in the shortest time compared to others. We now derive the
answer to the third research question (RQ3) as follows:

Ans. to RQ3: The bugs of the Chromium browser are the
most triggered on the Chrome OS and the least triggered
on the Fuchsia OS. Performance bugs on the Apple and
Fuchsia platforms take the longest time to fix.

IV. THREATS TO VALIDITY

In this section, we discuss the limitations of our work, the
threats to the validity of our findings, and our attempts to
minimize those threats.

Construct Validity and Internal Validity: Our study includes
bug reports opened over eight years period. Despite this large
dataset, we might have missed important information as we did
not include all bug reports in our study. This was not possible
due to the sheer volume of Chromium bugs in the repository.
Our bug classification method might have misclassified a few
bugs. As mentioned before, not all the bug reports included all
the information. Thus, important information might have been
missed out, which might have affect our results. However, we
could not find a way to mitigate this shortcoming.

External Validity: The findings from this study are derived
from the study of bug reports for the open-source Chromium

project. Thus, the results may not be generalizable to other
browser projects such as the Firefox browser or to proprietary
closed source projects such the Safari browser. Since our
results are derived from an in-depth study of a large dataset
spanning over eight years, we have high confidence in the
generalizability of the results.

Reliability: The methodology of data collection, analysis,
and results are well documented in this paper. The criteria
including the date-range for bug report collection are also
clearly mentioned in the paper. The Chromium bug repository
is publicly available online [2]. Hence, it should be possible
to replicate this study.

V. RELATED WORK

There are many studies of different aspects of bugs [6],
[9], [10], [11], [12], [13] and bug reports [16], [17]. Gegick
et al. [4] specifically studied at security bug report by text
mining. The work of Zaman et al [15] and Imseis et al. [7]
are the most relevant to ours.

This work of ours is inspired by the work of Zaman et
al. [15] and Imseis et al. [7]. Zaman et al. [15] studied the
security bugs and performance bugs in the Firefox browser
project. Recently, Imseis et al. [7] studied the same categories
of bugs in the Chromium browser project. These two studies
share some common research questions but they study two
different browser projects. In our study, we follow the proce-
dure of the work of Zaman et al. [15] as closely as possible
but we study the Chromium project instead of Firefox.

Our study on the Chromium browser bugs is built on a
dataset, which is different and larger than that of the work
of Imseis et al. [7]. Thus, this work can be considered as
a follow up to the studies of Imseis et al. [7] and Zaman
et al. [15]. Zaman et al. [15] studied the performance bugs,
and security bugs and other bugs in the Firefox browser
project. They explored mainly three aspects, how fast bugs
are fixed, who fixes the bugs, and other characteristics of bug
fixes. Their study reported that on average security bugs were
fixed 2.8 times faster than performance bugs and triaged 3.64
times faster. They also reported that security bugs were also
reopened 2.5 and 4.5 times more than performance and other
bugs. According to their study, security bugs were assigned to
relatively more experienced developers for fixing.

Our study substantially differs from the work of Zaman et
al. [15]. Although we closely follow their footsteps, we study

75

the bugs in the Chromium project. Instead of limiting our
work to the bugs associated with the Chrome browser only, we
included in our study the entire Chromium package. Similar to
their finding, we also found the security bugs being assigned to
more experienced developers. But, we found the performance
bugs being triaged and fixed faster, which contradicts their
result. While Zaman et al. [15] examined other characteristics
of bug fixes, we included the OS-level aspect to our analysis,
which their study does not have.

The recent work of Imseis et al. [7] is more similar to
our study. Similar to ours, they also studied the three cate-
gories (i.e., performance, security, and other) of bugs in the
Chromium project. Similar to the study of Zaman et al. [15],
their work also examined how fast bugs are fixed, who fix
the bugs, and other characteristics such as complexity. Similar
to the work of Zaman et al. [15], their study also lacks the
OS-level analysis, which our study includes.

While our study finds that performance bugs are fixed faster
than security bugs, they reported the opposite. Similar to our
finding, they also found that security bugs were assign to
more experienced developers, where experience is estimated in
terms of the number of previously fixed bugs by a developer.
Note that, the study of Imseis et al. [7] is based on bug reports
opened over only two months, “between March 2019 and April
2019” while ours includes a larger dataset consisting of bug
reports opened over more than eight years (opened between
May 21, 2012 and Nov 28, 2020).

VI. CONCLUSION

Security and performance are two important software re-
quirements especially more applicable to browser projects.
We have studied the security and performance bugs in the
Chromium browser project. Our dataset includes 189,668
closed Chromium bug-reports opened over more than eight
years period. The findings are derived from an in-depth
quantitative analysis of these large number of bug reports.

We have found that, on average, all categories bugs are
almost equally reopened (and reassigned) once closed. There
are variations in the prevalence of the Chromium bugs on
different operating system platforms on which those bugs
are triggered. We have also found that performance bugs are
triaged and fixed faster than security bugs or other bugs in the
Chromium project. Although more experienced developers are
assigned to the security bugs, this category of bugs take longer
to be triaged and fixed, possibly due to the higher complexity
of the security issues. Some security bugs are found to have
remained open for more than 2 years, which, at some level, is
concerning, given that Chromium is a widely used platform.

The findings from this study advances our understanding of
how security and performance bugs are prioritized and handled
in practice. The insights drawn from this study are directly
useful to the Chromium developers in shaping the strategy in
dealing with bugs. In future, we plan to extend this work along
two directions: (a) we plan to include even larger dataset across
different projects for better generalizability of the results, (b)

we want to include more qualitative analysis to draw insights
into why the results appear the way they do.

REFERENCES

[1] Chromium Bug Life Cycle and Reporting Guidelines.
https://www.chromium.org/for-testers/bug-reporting-guidelines#TOC-
Closed-bugs, verified: Feb 2022.

[2] Chromium Bug Repository. https://bugs.chromium.org/p/chromium/issues/list,
verified: Feb 2022.

[3] E. Campos and M. Maia. Common bug-fix patterns: A large-scale ob-
servational study. In Proceedings of the Empirical Software Enginerign
and Measurement, pages 404–413, 2017.

[4] M. Gegick, P. Rotella, and T. Xie. Identifying security bug reports
via text mining: An industrial case study. In 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010), pages 11–20,
2010.

[5] Tricentis GmbH. Software Fail Watch: 5th Edition.
https://www.tricentis.com/wp-content/uploads/2019/01/Software-Fails-
Watch-5th-edition.pdf, verified: Feb 2022.

[6] M. Hamill and K. Goseva-Popstojanova. Common trends in software
fault and failure data. IEEE Transactions on Software Engineering,
35(4):484–496, 2009.

[7] Joseph Imseis, Costain Nachuma, Shaikh Arifuzzaman, Minhaz Zibran,
and Zakirul Alam Bhuiyan. On the assessment of security and perfor-
mance bugs in chromium open-source project. In Proceedings of the
International Conference on Dependability in Sensor, Cloud, and Big
Data Systems and Applications (DependSys), pages 145–157. Springer
Singapore, 2019.

[8] Research Triangle Institute. The economic impacts of inadequate
infrastructure of software testing. RTI Project Report 7007.011, National
Institute of Standards and Technology, 2002.

[9] M. Islam and M. Zibran. A comparative study on vulnerabilities in
categories of clones and non-cloned code. In Proceedings of the 10th
IEEE International Workshop on Software Clones, pages 8–14, 2016.

[10] M. Islam and M. Zibran. On the characteristics of buggy code clones: A
code quality perspective. In Proceedings of the 12th IEEE International
Workshop on Software Clones, pages 23–29, 2018.

[11] M. Islam and M. Zibran. Sentiment analysis of software bug related
commit messages. In Proceedings of the 27th International Conference
on Software Engineering and Data Engineering, pages 3–8, 2018.

[12] M. Islam and M. Zibran. How bugs are fixed: Exposing bug-fix patterns
with edits and nesting levels. In Proceedings of the 35th ACM/SIGAPP
Symposium on Applied Computing, pages 1523–1531, 2020.

[13] M. Islam, M. Zibran, and A. Nagpal. Security vulnerabilities in
categories of clones and non-cloned code: An empirical study. In Pro-
ceedings of the 11th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 20–29, 2017.

[14] Md Rakibul Islam and Minhaz F. Zibran. What changes in where? an
empirical study of bug-fixing change patterns. ACM Applied Computing
Review, 20(4):18–34, 2021.

[15] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. Security versus
performance bugs: A case study on firefox. In Proceedings of the 8th
Working Conference on Mining Software Repositories (MSR), pages 93–
102. ACM, 2011.

[16] M. F. Zibran, F. Z. Eishita, and C. K. Roy. Useful, but usable?
factors affecting the usability of apis. In Proceedings of the 18th IEEE
International Working Conference on Reverse Engineering, pages 151–
155, 2011.

[17] Minhaz F. Zibran. On the effectiveness of labeled latent dirichlet
allocation in automatic bug-report categorization. In Proceedings of
the 38th International Conference on Software Engineering (ICSE)
Companion, pages 713–715. ACM, 2016.

76

