
Towards Implementation of an Integrated Clone
Management Infrastructure

Minhaz F. Zibran
Department of Computer Science, University of New Orleans, LA, USA

Email: zibran@cs.uno.edu

Abstract—Despite more than two decades of research on
software clones, a dependable integrated clone management
system is still not available and active clone management has
also remained far from industrial adoption. This paper proposes
a design of an integrated clone management infrastructure and
points to the challenges involved in realizing the design to a
dependable implementation.

I. INTRODUCTION
Code clones are recognized as a serious kind of code

smells. In addition to exposing the malign effects of clones,

the research community also acknowledges the benefits from

code cloning. Thus, clone management has drawn interests

in the community in relatively recent years than in farther

past. Towards clone management, initiatives from leading

software giants such as Microsoft, Google and other industrial

bodies in addition to the clone research community have been

encouraging, indeed.

Support for clone management, although with very limited

functionalities, has been available in popular IDE’s (Integrated

Development Environments) such as Microsoft Visual Studio

and Eclipse while some stand-alone research prototypes have

also been developed, only a few of which intend to offer

clone management support beyond detection [6], [9]. A few

software quality assessment tools [1], [2] have also been

available, which include features to support clone analysis.

Nevertheless, clone management has rarely been adopted in

software development process on daily or periodic basis [3],

[9]. We believe, the following two issues play a decisive role

behind this.

Lack of Interoperability and Integration: Although many

techniques and many prototypes have been developed for

solving important problems in different areas of clone man-

agement, those separate tools and techniques are rarely inter-

operable. There is no feature-rich dependable tool that can be

easily integrated with the development process.

Organizational Priorities: In industrial settings, a typical

software development project is planned for completion in a

very tight schedule, because, from the business perspective,

revenue from such a project typically remains inversely pro-

portional to the development time (in terms of man-hour) spent

in completing the project.

Indeed the benefits from code cloning (e.g., code reuse

for speed-up development process) are immediate while the

majority of probable negative impacts of clones (e.g., program

faults, increased maintenance effort) are uncertain and deferred

until (and if) those are encountered in future. Anyways, the

developers strive in writing and maintaining test suits expected

to reveal software defects no matter whether the faults appeare

from cloning or not. Thus, a software development team do not

want to spend significant portion of current time and efforts

for proactively managing clones whose harmful effects are

uncertain and not immediate. They would rather save that

effort, and are prepared to spend that, if necessary, to fix any

issues that may become visible in future.
In this paper, we propose an infrastructure for clone man-

agement, which also addresses the aforementioned two influ-

encing factors.

II. PROPOSED INFRASTRUCTURE

The proposed architecture for a clone management system

is summarized in Figure 1, in which, the distinct functional

components of the infrastructure are presented in rounded rect-

angles. To resolve the issues with interoperability described

above, the architecture emphasizes on complete integration

of diverse clone management features and techniques under

a common infrastructure. The solid bidirectional arrows in

Figure 1 represent integration while the dotted unidirectional

arrows denote the directions of flow of data and information.

The complete integration is necessary to minimize the need for

human efforts in clone management, which consequently, will

also help in addressing the issues with organizational priorities

described before.
The organizational priorities, in practice, are unlikely to

change in favour of clone management, because software

development projects will continue to be dictated by fi-

nancial and business constraints. We, therefore, argue that

clone management must adapt to it by incorporating fea-

tures developed on top of clone-based techniques for solving

additional problems in software engineering, beyond merely

clone management. Thus, the proposed infrastructure also

includes functional components enriched with customizable

and parameterized features for additional applications. For

example, the clone analysis part (Figure 1) is meant to

support product line engineering by the extraction of reusable

components detected from clones. The infrastructure also aims

to incorporate clone-based information into software quality

reports, refining developer evaluations, aid in version/branch

merging, origin analysis, and the like.
Effective clone management must support both proactive

and reactive means for dealing with the clones. Hence, the

2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

978-1-5090-1855-0/16 $31.00 © 2016 IEEE

DOI 10.1109/SANER.2016.89

60

VCS

IDE

Clone Visualization
- differences
- dispersion w.r.t. file
systems hierarchy
- distribution w.r.t.
inheritence hierarchy
- distribution w.r.t.
call-graph

Clone Refactoring
- refactoring patterns
- clone merging
- simultaneous edit
- edit propagation

Refactoring Verification
- test case generation
- test case adaptation

Copy-paste Support
- consistent renaming
of identifiers
- verification of
necessary
modifications
- documenting
original and cloned
code

Clone Annotation
- documenting
reasonings related
to cloning and
clone refactoring

Clone Detection
- incremental
- post-mortem
approach
- periodic
- customization

Quality Metrics
- code quality
- design quality

Refactoring
Effort Estimation

- parametric
- customization

Clone Analysis
- Library candidate
- origin analysis
- version/branch merging
- developer evaluation
- hot clones

Project Summary Report
- LOC
- test coverage
- cloning profile
- quality evaluation

Feedback Mechanism
- email
- pop-up in IDE
- Web-based interface

code
modification

code
update

Clone Avoidance
- education and practice
- clones in requirement docs
- clones in models

Server/Repository SideClient/Developer Side

Clone Search
- fast
- focused
- on-demand
- customization

feedback

Refactoring Scheduling
- periodic
- customization

Fig. 1. Proposed Infrastructure for Integrated Clone Management

infrastructure must be integrated with the daily software

development process by plugging in the clone management

techniques to a popular IDE [7], [8] and also to a popular

Version Control System (VCS), as proposed in Figure 1.

Proactive clone management will help in dealing with clones

right after those are created, while reactive clone management

will allow periodic detection and management of long-lived

clones, which are left intact for some documented legitimate

reasons. An integrated recommendation system must keep

propagating feedback and recommendations from the VCS

to the developers in IDE without disrupting their natural

workflow.
III. CHALLENGES

Till date, we, as a clone research community, have al-

ready developed many innovative and powerful techniques for

separately carrying out clone management activities such as

the detection, documentation, tracking, visualization, analy-

sis, merging and refactoring of clones. The capabilities and

limitations of those tools are discussed elsewhere [5], [9].

Instead of “reinventing the wheels”, it would be wise to reuse

existing techniques and tools in the implementation of the pro-

posed infrastructure. However, we see significant challenges

in realizing the proposed infrastructure by integrating existing

techniques and prototype tools.

First of all, the definitions of clones vary depending on use

cases. With respect to any of the clone management activities

mentioned above, there is no single tool that can operate in

accordance with all different task-specific definitions of clones.

The diversity in the definitions of clones and tuning parameters

used in different tools constraint their interoperability. In

addition, the variations in the formats and contents of the

inputs and outputs of the individual tools add to difficulty

in information sharing between them. While the formulation

of RCF (Reach Clone Format) [4] meant for documenting

clone information can help in information exchange among

individual tools, we do not see wide adoption of this particular

data format in existing tools.

An approach for integrating the independent tools can

include extensive glue code for transformation of data between

one format to another possibly involving substantial disk

operations, which may hinder the scalability and performance

of the proposed infrastructure and make it inappropriate for

practical use. Moreover, such an approach will be fragile

and susceptible to break when the individual tools change

independently.
A better approach can use collective efforts from the clone

research community. We may choose a common operating

platform, on which the tool authors can develop their tools.

The popular Eclipse platform having inherent plug-in architec-

ture can be such a suitable platform. Tool authors can develop

their tools as plug-ins to Eclipse and publish their tools with

exposed extension points. Individual tools then interact with

each other through the available extension points.

IV. CONCLUSION

This paper proposes an integrated infrastructure for effective

clone management. We have discussed the existing deficien-

cies and challenges against the implementation and adoption of

the proposed system. Towards realization of such a versatile

infrastructure, this paper makes a call for collective efforts

from the software clone research community.

REFERENCES
[1] ConQAT, https://www.cqse.eu/en/products/conqat/overview/, last access:

Dec 2015.
[2] PMD: Source code analyzer, https://pmd.github.io, last access: Dec 2015.
[3] I. Baxter, M. Conradt, J. Cordy, and R. Koschke. Software clone

management towards industrial application (dagstuhl seminar 12071).
Dagstuhl Report, 2(2):21–57, 2012.

[4] J. Harder and N. Göde. Efficiently handling clone data: RCF and cyclone.
In IWSC, pages 81–82, 2011.

[5] C. Roy and J. Cordy. Scenario-based comparison of clone detection
techniques. In ICPC, pages 153–162, 2008.

[6] C. Roy, M. Zibran, and R. Koschke. The vision of software clone
management: Past, present, and future. In CSMR-18/WCRE-21 Software
Evolution Week (SEW’14), pages 18–33, 2014.

[7] M. Zibran and C. Roy. Towards flexible code clone detection, manage-
ment, and refactoring in IDE. In IWSC, pages 75–76, 2011.

[8] M. Zibran and C. Roy. IDE-based real-time focused search for near-miss
clones. In ACM-SAC (SE Track), pages 1235–1242, 2012.

[9] M. Zibran and C. Roy. The road to software clone management.
Technical Report 2012-03, Department of Computer Science, University
of Saskatchewan, Canada, http://www.cs.usask.ca/documents/technical-
reports/2012/TR-2012-03.pdf, 2012.

61

