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Abstract. The presence of crop leaf diseases poses a persistent and sig-
nificant threat to agricultural productivity and food security, especially
in Bangladesh, where agriculture plays a pivotal role in the economy.
Developing efficient methodologies for timely crop leaf disease detection
and management becomes paramount. Nonetheless, our study addressed
the hurdles in detecting crop leaf diseases, with a special emphasis on
two datasets that included corn, and potato rather than relying on a sin-
gle dataset. While existing studies often rely on straightforward trans-
fer learning (TL) techniques, our research aimed to enhance the per-
formance of TL by systematically incorporating various EfficientNets
versions and customizing their architecture with different layers. In ad-
dition, our research made a notable contribution by introducing a novel
model selection method for ensemble learning that extended beyond tra-
ditional accuracy metrics to address misclassifications and class-specific
gaps. We devised a customized approach incorporating misclassification
counts and Hamming Loss, redefining the model selection process. Fur-
thermore, we identified the most suitable EfficientNets models for each
dataset and leveraged the Gradient Class Activation Map (Grad-CAM)
for decision visualization of the model. Consequently, our research effec-
tively addressed agricultural challenges and paved the path toward more
robust and precise crop leaf disease detection.

Keywords: Crop Leaf · Disease · EfficientNet · Misclassification · Ham-
ming Loss · Ensemble Learning · Grad-CAM

1 Introduction

Agriculture poses a fundamental cornerstone of human existence, relying on the
complex web of agroecosystems teeming with diverse plant life, intricate genetics,
and the harmonious interplay of environmental factors governing their growth.
In the context of Bangladesh, this vital sector assumes a paramount role, consti-
tuting a formidable 17% slice of the nation’s gross domestic product (GDP) and
casting its supportive mantle over an estimated 84% of the populace, either di-
rectly or indirectly, for their subsistence and livelihoods [1]. Therefore, crop leaf
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diseases become a significant threat to both crop health and economic prosper-
ity, undermining the delicate balance of agricultural ecosystems and impacting
human well-being [2].

In a global panorama, the toll exacted by crop leaf diseases is a stagger-
ing 40% of crop losses on a worldwide scale [3]. This statistic underscores the
urgent need for proactive measures, as many crop leaf diseases show visible symp-
toms. Therefore, timely and accurate identification of these symptoms is crucial,
marking a critical moment for effectively combating agricultural diseases. Tra-
ditionally, detecting crop leaf diseases in rural landscapes relied on expert visual
inspection, a challenging method for large areas that hinders prompt recogni-
tion. This labor-intensive and subjective approach is prone to errors and biases
[4]. Recent advancements in automated detection have significantly mitigated
the limitations of traditional methods, simplifying early-stage crop leaf disease
detection. Using state-of-the-art machine learning (ML) and deep learning (DL),
researchers have developed advanced image processing and object detection tech-
niques that can surpass human capabilities in certain cases [5, 6].

Numerous researchers diligently pursued the development of automated frame-
works for crop leaf disease detection, with numerous TL architectures pre-trained
on the foundational ImageNet dataset[5, 7–9]. While these frameworks demon-
strated impressive effectiveness, they are not immune to limitations, suggesting
considerable room for improvement. Their reliance on transfer learning (TL)
without model customization led to higher misclassification rates. Previous re-
search suffered from a lack of model explainability, failure to visualize decision-
making criteria, and regions of interest post-feature extraction, thereby impeding
understanding and trust in outcomes and limiting practical applicability.

Moreover, most of the researchers traditionally relied on single models for
classification tasks in crop leaf disease detection, overlooking the potential bene-
fits of ensemble learning (EL) methodologies[5, 10, 11, 9]. As we explored strate-
gies incorporating EL, a key challenge emerged: How to effectively distribute
importance among constituent models within the ensemble process, significantly
impacting the overall performance and robustness. This presented a critical as-
pect warranting further investigation and refinement of our research.

Traditionally, model selection for ensembles prioritizes accuracy, but this ap-
proach often fails with real-world datasets, leading to misclassifications and class-
specific gaps. This gap between potential and real-world effectiveness highlights
the need to reevaluate selection criteria for more robust ensembles. Our research
focused on designing a methodology to overcome these limitations, establishing
a robust ensemble framework for crop leaf disease detection. We chose the Effi-
cientNets architecture from the TL domain for its efficiency and adaptability to
different datasets, ensuring effective handling of complex tasks.

We initiated the process by adapting the chosen EfficientNets models as base
models and then fine-tuning them as they were pre-trained on the ImageNet
dataset. In addition to fine-tuning, we optimized the models by incorporating
customized convolutional layers with diverse kernels and filter sizes, as well as
a polling layer. These additions effectively captured relevant features within the
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crop leaf images. Our meticulous approach extended to identifying the most
suitable version of the EfficientNet architecture for each dataset and ensuring
appropriate fine-tuning. To shed light on our decision-making process, we utilized
the Grad-CAM.

Furthermore, we diverged from exclusive reliance on a single methodology by
implementing two distinct ensemble techniques. In the context of model selection
for ensemble techniques, our focus shifted towards the introduction of a novel
model selection approach, departing from the conventional emphasis on accuracy
to instead prioritize misclassifications and Hamming loss. We introduced a metic-
ulously designed algorithm for model selection, with the overarching aim of min-
imizing misclassifications while simultaneously maximizing accuracy. Through
extensive experimentation, Bayesian Model Averaging (BMA) emerged as the
most effective choice, attributable to its remarkable proficiency in substantially
reducing misclassification rates across all datasets in our experiments.

The rest of the article is structured as follows: initiates with an exploration of
the existing literature in Section 2, followed by a detailed presentation of methods
in Sections 3 and 4. Section 5 subsequently analyze the achieved performances.
Expanding upon these findings, Section 6 engages in a comprehensive discourse,
evaluating the practical implications of the model. Section 7 conscientiously
delineates the study’s limitations. Finally, Section 8 concludes the paper, and
encapsulates the key takeaways and contributions of the study.

2 Literature Review

In recent years, crop leaf disease detection has evolved significantly, revealing
dominant trends and critical challenges. This section provides a comprehensive
overview, requiring detailed exploration through an exhaustive analysis of cur-
rent research.

Moin et al. [5] demonstrated avant-garde deployment of DL, employing a
convolutional neural network (CNN) alongside six well-established TL models
to adeptly identify diseases in pivotal crops of Bangladesh. Despite attaining
notable precision rates (96.82%, and 98.55% for corn, and potato), the inves-
tigation recognizes constraints in mitigating misclassification. In another study
by Islam et al. [10] utilized an eight-layer convolutional architecture in a cus-
tomized CNN model, achieving 98.23% accuracy for corn and 96.90% for potato
leaf disease datasets respectively. Nonetheless, limitations emerged due to the
lack of regularization techniques, potentially impacting adaptability to new data
scenarios. Utilizing varied TL for feature extraction and ML for corn leaf disease
classification, Syarief et al. [7] achieved notable results, including 93.5% accuracy
via AlexNet with support vector machine (SVM) classification; limitations arose
from a lack of custom fine-tuning layers and model generalizability.

Regarding potato leaf disease detection, VGG16 acted as a feature extractor,
complemented by SVM, K-Nearest Neighbors (KNN), Logistic Regression (LR),
and Neural Network classifiers [8]. Notably, VGG16 coupled with LR demon-
strated peak performance, achieving 97.8% accuracy, yet the study acknowledged
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limitations, including potential model robustness challenges. In another study
conducted by Bonik et al. [11], a seven-stage CNN model for potato leaf disease
detection via a Sequential Model demonstrated promising outcomes with 94.2%
accuracy. Nonetheless, it encountered limitations, e.g., a lack of customized fine-
tuning layers and relatively poor performance. Furthermore, in another research
by Ajra et al. [9], examined unhealthy leaf symptoms in potato and tomato leaves
using image augmentation and ResNet-50 and AlexNet as CNN feature extrac-
tors. Notably, ResNet-50 attained 97% accuracy, and AlexNet achieved 96.1%;
however, limitations stemmed from augmentation’s potential unreliability.

3 Datasets Description

Our investigation focused on the two predominant crops in Bangladesh, corn
and potato, sourcing their leaf images from the Kaggle repository, specifically the
PlantVillage dataset [12]. In table 1, we condensed an overview of the datasets of
the two crop species, while Figure 1 displayed some sample images. The corn leaf
disease dataset consisted of 14,632 images classified into four distinct categories,
i.e., Corn Common Rust (CCR), Corn Gray Leaf Spot (CGLS), Corn Healthy
(CH), and Corn Leaf Blight (CLB). The potato leaf disease dataset comprised
8,286 images of three distinct classes, i.e., Potato Early Blight (PEB), Potato
Healthy (PH), and Potato Late Blight (PLB).

Table 1: Details of the Bangladeshi crop leaf disease datasets
Crop Scientific Name Total Images Total Class Image Format

Corn Zea mays 14,632 4 JPG

Potato Solanum tuberosum 8,286 3 JPG

Fig. 1: Sample leaf images from Corn and Potato datasets

4 Research Methodology

Our research methodology comprised five distinct stages, starting with the appli-
cation of data preprocessing techniques. Then, we partitioned these preprocessed
datasets into three subsets to seamlessly support the successive stages of train-
ing, validation, and testing during the evaluation of our customized TL models.
Subsequently, we amalgamated predictions from individual models by consid-
ering class-specific misclassifications and Hamming loss, collaboratively striving

Minhaz Zibran

Minhaz Zibran

Minhaz Zibran



5

to minimize instances of misclassification. After evaluating the results, we em-
ployed Grad-CAM to generate enlightening heatmaps, which provide profound
insights into the predictive effectiveness of the model.

4.1 Data Preprocessing

The images within the Corn, and Potato leaf disease dataset had an original size
of 256 × 256 × 3, with the first two dimensions denoting height and width and
the last dimension indicating color channels, prompting us to standardize them
for our experimental setup to 224 × 224 × 3.

4.2 Proposed Model Structures and Customization

Our primary emphasis revolved around the customization of existing models
to adeptly leverage the principles inherent in TL paradigms. In this pursuit,
our initial step involved the meticulous construction of multiple iterations of
the customized EfficientNet architectures, spanning from EfficientNetB0 to Effi-
cientNetB7. The preference for EfficientNet over alternative options arises from
its optimized scaling and well-balanced representation of features spanning from
lower to higher levels. Our thorough approach guaranteed the inclusion of fun-
damental and intricate attributes in our final customized models. Additionally,
our model structure underwent meticulous refinement, culminating in the ex-
ecution of these tailored models. Furthermore, we orchestrated a multifaceted
process involving fine-tuning, parameter optimization, and architectural adapta-
tions, ensuring the seamless integration of the models into the specific problem
domain.
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Fig. 2: Customization of EfficientNets model architecture

4.3 Customized EfficientNetB0-B7 Model Architecture

In customizing the EfficientNet (B0-B7) model architecture, we initiated by
defining the base model with pre-trained weights from ImageNet, which man-
dated the addition of extra convolutional layers to tailor the models effectively
for our specific task. These supplementary Convolutional (Conv2d) layers were
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introduced to augment the model’s capacity for capturing intricate patterns
within the data. Continuing, we added a 32-filter Conv2D layer with a 3x3
kernel from the foundational base, enhancing feature extraction and preserving
spatial relationships. We followed this with MaxPooling2D to compress data,
refine dimensions, and boost efficiency, all while maintaining stability through
BatchNormalization (BN).

In the subsequent steps, a 64-filter Conv2D layer with a 3x3 kernel further
improved feature extraction, while MaxPooling2D distilled essential traits, sup-
ported by BN for stability. Another Conv2D layer with 128 filters and a 5x5
kernel broadened receptive fields for a global context. We opted for GlobalMax-
Pooling2D instead of MaxPooling to generate a singular vector of maximum
features and high-level abstractions. We introduced three convolutional layers,
rather than just one, to facilitate the flattening of spatial hierarchies, which
was crucial for effective model preparation for classification. Following this, we
incorporated dense layers to enhance pattern recognition.

Moreover, we incorporated an initial dense layer consisting of 1024 neurons
to learn the lower-level features, with the aid of a dropout layer to randomly
drop 30% of learned neurons to prevent overfitting. Subsequently, we introduced
another dense layer of 512 neurons to learn the intermediate-level features. More-
over, a third dense layer of 256 neurons was added to learn the higher-level or
complex features. The final and last dense layer consisted of the number of neu-
rons related to class values and activated with a softmax activation function. The
decision to include three dense layers, as opposed to just one, aimed to equip
the model with the capacity to effectively learn and represent diverse patterns
for various crop leaf disease detection. The architecture seamlessly integrates
fine-tuning with customized layers, as exemplified in Figure 2, representing the
highest level of expertise in crop ailment through careful adaptation of the Effi-
cientNet framework.

4.4 HAMIP Ensemble Techniques

We embraced a systematic strategy known as Hamming loss and Misclassifica-
tion Inverse Proportionate (HAMIP) to elevate our ensemble’s precision to attain
peak performance. This approach intricately guided the curation of models from
our collection of 8 meticulously customized EfficientNet models. Our strategy
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Fig. 3: Illustration of refined ensemble formation through model curation
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aimed to systematically reduce class-specific misclassifications by selecting mod-
els with the fewest errors and, when comparable, prioritizing those with lower
Hamming loss, thereby enhancing ensemble precision, resilience, and predictive
efficacy. Refer to Figure 3 for visual representation, and the procedural steps
for the implementation of HAMIP are as follows:

Class-Specific Misclassification Computation In the initial step, we sys-
tematically computed class-specific misclassification values for all classifiers present
in the ensemble. This process involved evaluating the performance of each clas-
sifier concerning distinct classes. We determined the misclassification Mc,i for a
given class c and classifier i using the equation:

Mc,i =
∑
j ̸=c

ConfusionMatrixij (1)

Here, the summation encompasses all instances j where the predicted class j
does not match the true class c.

Selective Classifier Identification Subsequently, we entailed the identifi-
cation of classifiers that demonstrate the most minimal misclassification rates
across distinct classes. This selection process ensured that each class’s classifier
was chosen, aligning to achieve the lowest Mc,i values. This meticulous classi-
fier selection guaranteed precision in predicting the class-wise outcomes of our
proposed model.

Hamming Loss Assessment In scenarios where multiple models exhibit simi-
lar misclassification, our preference shifted towards the lower Hamming loss (HL)
models. This criterion guarantees the selection of models that reduce errors spe-
cific to individual classes and demonstrate improved accuracy in labeling. The
selection process incorporates the Hamming loss HLi for each model i, defined
as:

HLi =
1

N

N∑
j=1

δ(yij , ŷij) (2)

Here, N is denoted as the total number of instances, and for instance, j and
class i, yij represent the true label, and ŷij as the predicted label for the same
instance, and δ is the Kronecker delta function, which equals 1 if yij ̸= ŷij (where
ij are indices) and 0 otherwise.

Dual Criterion for Ensemble Refinement In this phase, we seamlessly
integrated the preferred optimal classifiers for each class, then employed diverse
ensemble techniques and placed paramount importance on their performance
concerning misclassification and Hamming loss. Here’s our ultimate algorithm
for selecting the models with the least misclassification and Hamming loss for
each class in a dataset:
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Algorithm 1 Model Selection based on Misclassification and Hamming Loss

1: procedure SelectModels(dataset)
2: classes← List of classes in the dataset
3: selected models← ∅
4: for class in classes do
5: least misclassified models ← Models with the least misclassification for

class
6: if |least misclassified models| > 1 then
7: selected model ← Model with the least Hamming loss among

least misclassified models
8: for model in least misclassified models do
9: if model has lower Hamming loss than selected model then
10: Add model to selected models
11: end if
12: end for
13: else if |classes| > |models| then
14: Allows taking one model for multiple classes
15: else
16: Add least misclassified models to selected models
17: end if
18: end for
19: return selected models
20: end procedure

4.5 Ensemble Learning (EL) Strategies

We utilized four ensemble techniques Majority Voting (MV), SoftMax Averaging
(SMA), Weighted Averaging (WA), and Bayesian Model Averaging (BMA) to
evaluate which one performs better.

4.6 Performance Evaluation Measures

To comprehensively assess our models’ performance across diverse datasets, we
used confusion matrices to derive various statistical indicators, providing a holis-
tic evaluation of the model’s efficacy. We incorporate a set of performance met-
rics, including class-wise misclassifications (Mc,i), which have been previously
detailed in HAMIP techniques. Additionally, we measure total misclassifications
overall (MT), accuracy, precision, recall, specificity, and F1-score to serve as a
comprehensive evaluation framework for the overall effectiveness of our model.

4.7 Experimental setup

We utilized Kaggle’s computational resources, we employed a 2-core Intel Xeon
CPU and a high-performance Tesla P100 GPU for swift training and inference.
We carefully divided the dataset into training (70%), validation (15%), and test-
ing (15%) subsets to ensure robust evaluation. With a precise batch size of 16,
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we utilized the Adam optimizer with a learning rate of 0.001 and an epsilon value
of 0.1 for model convergence. The training involved the categorical cross-entropy
loss function over 40 epochs, with an early stopping checkpoint after 15 consec-
utive epochs without improvement in validation accuracy, ensuring optimized
results and resource utilization in our thorough training and evaluation setup.

5 Experimental Results Analysis

In this section, we unveil the empirical and graphical outcomes stemming from
our meticulous evaluation of models across two distinct leaf disease datasets. A
rigorous comparison was conducted, evaluating the performance of customized
EfficientNet models ranging from B0 to B7, with model selection based on mis-
classification and Hamming loss criteria. We then assessed four tailored ensemble
techniques for corn, and potato datasets, conducting a comprehensive analysis
with various experimental measurements and performance metrics to evaluate
the model’s effectiveness in addressing crop leaf diseases.

In our pursuit of corn leaf disease detection, we initially employed eight cus-
tomized pre-trained models, spanning from EfficientNet B0-B7. The evaluation
of their performance across multiple dimensions, such as misclassification for
each class, is presented in Table 2, while the corresponding accuracy, Hamming
loss (HL), precision, recall, F1 score, and specificity are displayed in Table 3.

Table 2: Misclassifications for corn dataset’s classes
Class EB0 EB1 EB2 EB3 EB4 EB5 EB6 EB7

CCR 7 4 1 1 1 0 0 0

CGLS 6 7 6 9 6 7 7 10

CH 0 0 0 1 0 0 0 0

CLB 12 5 5 11 3 8 7 9

Total 25 16 12 22 10 15 14 19

Remarkably, we observed that EfficientNetB4 (EB4) emerged as the top gainer,
boasting an impressive accuracy of 99.55% and a minimal 0.45% Hamming Loss.
Furthermore, EB4 exhibited the highest precision, recall, F1 score, and speci-
ficity. Subsequently, we applied our customized dual-criterion process for model
selection from the EB0-EB7 range. Analyzing Tables 2 and 3, we identified that,
for the four-class corn leaf dataset, class CCR exhibited zero misclassifications,
with EB5, EB6, and EB7 showcasing exemplary performance. Among these, we
selected EB6 as the model for the ensemble due to its lowest HL. Furthermore,
for the category CGLS, we maintained EB4, while for class CH, we introduced
EB2 as the designated model. Notably, EB5 displayed a lower HL than EB2,
warranting its inclusion in our ensemble selection.

After the selection of our models, we proceeded to apply four ensemble tech-
niques, among which BMA delivered better performance. Additionally, we com-
pared our model selection methods and ensemble techniques with accuracy-based
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Table 3: Evaluation of EB0-EB7 performance on corn leaf disease dataset
Algorithm Accuracy(%) HL(%) Precision(%) Recall(%) F1-Score(%)

EB0 98.86 1.14 98.87 98.86 98.86

EB1 99.27 0.73 99.27 99.27 99.27

EB2 99.45 0.55 99.45 99.54 99.45

EB3 98.95 1.05 98.95 98.95 98.95

EB4 99.55 0.45 99.54 99.45 99.54

EB5 99.32 0.68 99.32 99.31 99.32

EB6 99.36 0.64 99.36 99.36 99.36

EB7 99.14 0.86 99.16 99.15 99.13

BMA (Acc BMA). From the data presented in Table 3, it became evident that
EfficientNet models EB2, EB4, and EB6 emerged as the top three accuracy gain-
ers, and thus, we also employed Acc BMA for their ensembling to facilitate com-
parative analysis, as detail is presented in Table 4. It became evident that BMA
with our model selection method outshone the rest in terms of performance, with
only one misclassified sample and leading across all performance metrics. Figure
4 illustrates the confusion matrix and ROC curve of the top-performing BMA
model, affirming the effectiveness of our overall approach. During our in-depth

Table 4: Evaluation of ensemble methods on corn leaf disease dataset
Measures MV SMA WA BMA Acc BMA

Accuracy(%) 99.90 99.90 99.77 99.95 99.81

HL(%) 00.09 00.09 00.23 00.04 00.18

MT 2 2 5 1 4

Precision(%) 99.90 99.90 99.77 99.95 99.81

Recall(%) 99.90 99.90 99.77 99.95 99.81

F1-Score(%) 99.90 99.90 99.77 99.95 99.81

Specificity(%) 99.97 99.96 99.92 99.98 99.93

Table 5: Misclassifications for Potato leaf disease dataset’s Classes
Class EB0 EB1 EB2 EB3 EB4 EB5 EB6 EB7

PEB 0 5 3 1 2 3 2 1

PH 0 3 0 4 1 0 1 0

PLB 3 1 5 4 13 2 5 1

Total 3 9 8 9 16 5 8 2

assessment of the customized EfficientNet models (EB0-EB7) specifically for the
potato leaf disease dataset, we undertook a thorough and exhaustive evaluation.
The misclassifications for each class are meticulously documented in Table 5,
while additional performance metrics analysis is in Table 6. It’s worth highlight-
ing that EfficientNet B7 (EB7) exhibited outstanding performance, achieving an
impressive 99.84% accuracy, the highest precision at 99.84%, and remarkable
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(a) Best confusion matrix (b) Best ROC curve

Fig. 4: Confusion matrix and ROC curve for corn leaf disease dataset

Recall and F1 scores of 99.83%. Equally noteworthy, EB0 also delivered com-
mendable results, with just 3 instances of misclassification. Next, after reviewing
Table 5 and Table 6 and applying our customized algorithm, we observed that
in the three-class potato leaf dataset, class PEB had zero misclassifications, with
EB0 as the solitary top performer, and we designated EB0 as the chosen model.

Table 6: Evaluation of EB0-EB7 performance on potato leaf disease dataset
Algorithm Accuracy(%) HL(%) Precision(%) Recall(%) F1-Score(%)

EB0 99.76 0.24 99.76 99.75 99.75

EB1 99.28 0.72 99.28 99.27 99.28

EB2 99.36 0.64 99.36 99.35 99.36

EB3 99.28 1.04 99.28 99.27 99.27

EB4 98.72 1.28 98.73 98.71 98.71

EB5 99.60 0.40 99.60 99.59 99.60

EB6 99.36 0.64 99.36 99.36 99.36

EB7 99.84 0.16 99.84 99.83 99.83

Regarding class PH, EB0, EB2, EB5, and EB7 exhibited the lowest misclassifica-
tion, with EB7 emerging as the preferred choice due to its minimal HL. Likewise,
for class PLB, EB1 and EB7 had the fewest misclassifications. Since EB7 had
already been selected, we opted for EB1. Notably, EB5 and EB6 demonstrated
lower HL values than EB1, prompting their inclusion in our ensemble selection.
To compare our selection method with accuracy-based selection, we identified
EB0, EB5, and EB7 as the top accuracy gainers from Table 6 and integrated
them to calculate Acc BMA. After that, the results of four ensemble techniques
along with Acc BMA for potato leaf disease detection are shown in Table 7.
BMA continued to excel, exhibiting zero misclassifications and achieving a flaw-
less 100% performance across all performance measuring metrics. Figure 5 serves
as additional validation for our approach, showcasing the confusion matrix and
ROC curve of the high-performing BMA model. The exceptional results achieved
in potato leaf disease detection can be primarily attributed to the substantial
contributions made by our tailored pre-trained models and the ensemble model
selection algorithm.
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Table 7: Evaluation of ensemble methods on potato leaf disease dataset
Measures MV SMA WA BMA Acc BMA

Accuracy(%) 99.91 99.91 99.91 100.00 99.91

HL(%) 00.08 00.08 00.23 0.00 00.08

MT 1 1 1 0 1

Precision(%) 99.91 99.91 99.92 100.00 99.91

Recall(%) 99.91 99.91 99.91 100.00 99.91

F1-Score(%) 99.91 99.91 99.91 100.00 99.91

Specificity(%) 99.95 99.95 99.97 100.00 99.95

(a) Best confusion matrix (b) Best ROC curve

Fig. 5: Confusion matrix and ROC curve for Potato leaf disease dataset

5.1 Gradient Class Activation Map (Grad-CAM)

In our study, we incorporated Grad-CAM visualization, a technique enhancing
our understanding of focal model regions during prediction. This visual repre-
sentation, illustrated in Figure 6, notably enhances transparency and clarity
surrounding our best-performing base model’s internal operations.

Corn Leaf Image Analysis Potato Leaf Image Analysis

Fig. 6: Gradient class activation map visualization

Firstly, we generated a heatmap by mapping the input image to the final
convolutional layer activations and output predictions. Next, we calculated the
gradient of the top predicted class concerning the last convolutional layer’s acti-
vations. We assigned weights to each channel based on its significance in predict-
ing the class and aggregated them for the class activation heatmap. To facilitate
visualization, we standardized the heatmap within a scale of 0 to 1. The final step
involves rescaling the heatmap to a range of 0-255 and visualizing it, providing
valuable insights into our model’s decision-making process.
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6 Discussion and Extended Comparison

Our carefully crafted approach, thoughtfully tailored to the intricacies of crop
leaf disease detection, employed diverse datasets encompassing corn, and potato.
Our strategy introduced customized TL models rooted in the foundation of Effi-
cientNet B0-B7 architecture while innovatively selecting ensemble models based
on misclassification and Hamming loss. Our evaluation highlighted EB4’s excel-
lence in corn and EB7’s superiority in potato ultimately leading to a refined
ensemble selection process.

In a rigorous analysis of our work, we found that BMA consistently emerged
as the superior ensemble technique, remarkably reducing misclassified images.
It’s important to note that we also incorporated accuracy-based selection into
our approach, choosing the top three models based on accuracy and then ensem-
ble them using Acc BMA. The utilization of our model-selected BMA approach
yielded superior results. In the case of potatoes, our approach achieved a re-
markable absence of misclassifications, while in corn, only two instances were
misclassified. These outcomes underscore the impressive efficacy of our proposed
BMA model in enhancing classification accuracy, primarily due to its capacity to
capture diverse perspectives from constituent models and minimize the impact
of individual model biases.

In addition, we complemented our evaluation with GradCAM visualizations,
providing insightful visual representations of our best-performing base models,
namely, EB4 for corn and EB7 for potato, further enhancing the interpretabil-
ity and trustworthiness of our results. Our holistic model proposal integrated
customized EfficientNet models, a tailored selection algorithm, and the potent
BMA technique, reinforced by insightful GradCAM visualizations, constituting
a robust framework for crop leaf disease detection.

Table 8: Performance comparison with previous researches
Dataset Reference Accuracy(%) Precision(%) Recall(%) F1-Score(%)

[5] 96.82 - - -
Corn [10] 98.23 - - -

[7] 93.0 - 93.5 -
Proposed 99.95 99.95 99.95 99.95

[10] 96.90 - - -
Potato [8] 97.8 97.8 97.8 97.8

[11] 94.40 73.00 80.00 82.30
Proposed 100.00 100.00 100.00 100.00

Furthermore, we performed an exhaustive comparison which is outlined in
Table 8 firmly establishes the superiority of our proposed methodology over
previous research efforts. This achievement holds particular significance, given
that our approach prioritizes interpretability without compromising the depth
and comprehensiveness of the framework.
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7 Threats To Validity

While we diligently tailored our crop leaf disease prediction framework to two
specific crop varieties (corn, and potato), our focused approach may have limited
the generalizability of our findings to these crops. It was essential for us to ac-
knowledge that benchmark datasets for crop leaf disease detection encompassed
other prominent species like wheat, tomato, rice, and chili leaf diseases, present-
ing a potential avenue for future research. The prospect of merging diverse leaf
disease datasets across various crop species could have expanded the dataset’s
scope, enabling us to develop comprehensive prediction models for each distinct
crop leaf disease, a direction we found enticing for further exploration.

In this work, we primarily concentrated on presenting techniques and a pro-
posed method for leaf disease detection, yielding minimal misclassifications. We
postulated that integrating attention mechanisms, such as soft attention (SA),
could further enhance results by focusing on subtle yet critical features that
might be challenging to detect in the remaining misclassifications. We aim to
incorporate these enhancements in future extensions of this research, advancing
the sophistication and performance of our predictive models.

8 Conclusion and Future Work

Our work, precisely designed to address the intricate landscape of crop leaf
disease detection, introduces a strategic response that combines innovative tech-
niques and a tailored model. Utilizing diverse datasets encompassing corn, and
potato, we embarked on a journey of exploration, beginning with customized TL
and an exhaustive examination of various EfficientNet versions. Our research fills
a critical void in ensemble learning within the realm of DL methodologies.

In this research, we challenged the conventional model selection paradigm
that primarily relies on accuracy. Recognizing that accuracy alone may not ad-
equately address misclassifications and gaps within each class, we introduced a
novel approach that factors in misclassification counts and Hamming loss, rev-
olutionizing ensemble model selection. The remarkable results achieved through
BMA highlight the efficacy of our approach. We also identified the best-performing
EfficientNet models for each dataset, showcasing EB4 for corn and EB7 for
potato. Additionally, the visualization of their decision-making process using
GradCAM provided valuable insights. Our primary aim was to minimize mis-
classifications, with notable success in the potato leaf dataset and substantial
progress in the corn dataset.

In the future, we intend to extend our research to encompass diverse crops,
exploring new algorithms for ensemble model selection. Further investigations
into different attention mechanisms are on the horizon, aiming to create a model
with minimal misclassifications, approaching near-zero levels.
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