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ABSTRACT
Generating accurate Software Bill of Materials (SBOM) is challeng-
ing due to the complex dependencies in the diverse components
used in software and also the way software is built into executables.
A handful of tools claim the capability of automatic SBOM genera-
tion from software distributions while little is known about their
applicability, strengths, and limitations. Our study makes quantita-
tive and qualitative comparisons of the four such tools (i.e., ORT,
cnn, syft, cdxgen) that claim to be capable of generating SBOM
from JavaScript projects. For the comparison, we operate these
four tools on 50 open-source JavaScript npm projects. We find sig-
nificant performance variations when evaluating their ability to
extract component details, especially in detecting dependencies.
The findings of this study are useful in the design and development
of SBOM generator tools, in end-users’ selections of such tools, and
thus in the overall improvement of the security and transparency
in software supply chain.

CCS CONCEPTS
• Software and its engineering→ Software creation and man-
agement; • Security and privacy → Software and application
security; • Computing methodologies → Empirical studies
in software engineering.
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1 INTRODUCTION
Software development has witnessed tremendous change as a result
of the widespread use of open-source software (OSS) and third-
party dependencies [26]. Developers frequently use existing code,
libraries, and dependencies to speed up application development.
However, this reliance creates significant problems for security,
licensing, vulnerabilities, and software supply chain (SSC) man-
agement. This is where SBOMs come in, serving as a foundational
blueprint. They provide a comprehensive list of all the compo-
nents, libraries, and dependencies present within a software appli-
cation [25]. From a security perspective, if a component/ingredient
used in a software is found insecure, the entire software can be
considered insecure necessitating immediate measures to secure
the system.

In the current software environment, cyberattacks frequently tar-
get vulnerabilities in both primary software components and third-
party libraries and dependencies [27]. For instance, the SolarWinds
attack [2] demonstrated the risks posed by hidden vulnerabilities
deep in the SSC. This highlights the importance of SBOMs since
they provide a clear, organized understanding of the components
within a software product [8]. SBOM is becoming an essential tool
for navigating these challenges.

Furthermore, regulatory bodies have focused on enhancing soft-
ware transparency. In May 2021, the US government took a sig-
nificant step to improve accountability and security of SSC [5]. It
was mandated that federal agencies and their contractors supply
SBOMs for their software. While this initiative is praiseworthy, it
raises questions about its adoption by non-mandated organizations
within the United States. Furthermore, there are concerns about
its implementation by organizations outside of the US who are not
obligated to produce or provide SBOMs.

While maintaining and providing SBOMs for new and ongoing
software projects can be relatively easy, doing so for legacy soft-
ware involves major challenges. One approach to creating SBOMs
traditionally involves manual code inspection and/or consulting
the original developers, both of which are time-consuming, error-
prone, and, in the worst case, impossible. Moreover, these types of
software often lack proper documentation, which makes the inte-
gration of SBOMs even more challenging. Ideally, this problem can
be solved, if we can build tools capable of the automatic generation
of SBOM from software executables or distribution packages.
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Automatic SBOM generation from a software executable or dis-
tribution package is technically a challenging task due to several
reasons. Software packages are complex, with extensive depen-
dencies, code obfuscation, and frequent updates. Additionally, the
complexity is increased by the lack of a universal SBOM standard,
making it necessary for SBOM generators to be adaptable to differ-
ent standards. Only a handful of tools claim the ability to accurately
produce SBOMs from software distribution packages although their
capabilities are limited to the programming languages (e.g., Java,
JavaScript, Python) primarily used in writing the software. As the
area is new and there are not many tools claiming to be automatic
SBOM generators, there is lack of studies examining the strengths
and weaknesses of such tools.

In this paper, we present the first study to compare the capabili-
ties of tools that claim the ability to generate SBOM from JavaScript
(Node Package Manager) npm project distributions. Because such
tools are typically language-specific we choose a language, and in
this study, we emphasize on the JavaScript ecosystem, as it has been
the most used programming language on GitHub since 2014 [1].
We use a robust methodology that includes tool and project selec-
tion, SBOM generation, ground truth creation, and comparative
metric-driven analysis.

The rest of the paper is organized as follows: In Section 2, we
begin by providing background information on SBOM. Moving
on to Section 3, we describe the methodology used in our study,
including topics such as the selection of tools and projects, SBOM
generation, the creation of a ground truth, and the explanation of
the metrics used for comparison. Section 4 presents a complete
qualitative and quantitative analysis of four SBOM tools. Section 5
outlines the limitations of our work. Finally, in Section 6, we present
conclusions and provide directions for future research.

2 BACKGROUND AND RELATEDWORK
There have been many studies on software quality assurance in-
volving the investigation of bug patterns [19, 20, 24], security vul-
nerabilities [11, 21], code smells [16, 30, 31], code quality [3, 16],
human aspects [6, 7, 12, 13, 17, 18] of software development and
maintenance as well as comparison of methods/tools [14, 15, 22, 23]
for measuring such aspects.

The concept of a Bill of Materials (BOM) is not new either and
it has its roots in the manufacturing sector. However, the adapta-
tion of BOMs for software, commonly termed as SBOMs [29], has
emerged as a relatively recent phenomenon. The increasing com-
plexity of software projects, combined with the growing emphasis
on security and compliance, has necessitated an organized approach
to understanding and documenting software components. Reflect-
ing this urgency, the Executive Order on Improving the Nation’s
Cybersecurity [5] has emphasized the significance of SBOMs as a
fundamental mechanism to increase transparency and strengthen
the software supply chain. By defining minimum elements and fos-
tering a foundation for software transparency, the SBOM initiative
seeks to facilitate effective vulnerability management and elevate
trust in our digital infrastructure [25].

The constantly evolving software ecosystem is served by a va-
riety of SBOM formats. While notable formats like the Software
Package Data Exchange (SPDX) of the Linux Foundation place a

strong emphasis on licensing and copyright information, ISO/IEC-
standardized Software Identification Tags (SWID) place a strong
emphasis on uniquely identifying software components [28].

However, amidst this spectrum of options, CycloneDX has dis-
tinguished itself. Released in its latest version, v1.5, in June 2023,
it has not only witnessed rapid adoption but is also the preferred
choice of numerous organizations [10]. Currently, it’s estimated that
about 100,000 organizations have integrated CycloneDX into their
operational framework [9]. CycloneDX, which was created as a
part of the Open Worldwide Application Security Project (OWASP)
project, successfully strikes a compromise between thorough docu-
mentation and ease of use, making it both machine-readable and
human-parsable. Its emphasis on extensibility, which covers ev-
erything from hardware and firmware to libraries and proprietary
frameworks, underlines both its expanding prominence in the soft-
ware industry and its importance to our research.

While automatic SBOM generation tools are scarce, studies com-
paring such tools are even scarcer. Recently, Balliu et al. [4] have
explored the effectiveness of SBOM tools in Java Maven projects.
Their study inspires us to evaluate SBOM generation tools for
JavaScript projects. While they focused on Java projects, we ex-
amine the performance of tools claiming to identify SBOMs in
JavaScript projects.

3 METHODOLOGY
We test SBOMgenerators or generation tools against popular JavaScript
npm projects to evaluate their effectiveness. Our methodology, as
shown in Figure 1, starts with the selection of both the projects and
the SBOM tools. We then employ these tools to produce SBOMs and
carry out a comparative analysis of the outcomes. The following
subsections detail each step of our approach.

3.1 Selection of SBOM Generators
We start by searching on GitHub for projects labeled ‘sbom’ with
at least 100 stars, as this typically indicates active community in-
volvement and support.

Following the initial search, we identify a total of 36 projects that
match the criteria. However, upon examining the documentation
of each project, we find that many of these projects primarily focus
on analyzing existing SBOMs to identify potential vulnerabilities
in other projects. This means they take SBOMs as input and out-
put vulnerability of other projects. They do not provide SBOMs
themselves.

For the requirements of our study, we filter the tools based on:

(1) Their capability to create SBOMs in the CycloneDX format.
(2) Support for JavaScript npm projects.
(3) Command-line functionality for straightforward scripting

and automation.

Through this process of elimination, we are left with four key
tools: OSS Review Toolkit (ORT), cyclonedx-node-module (cnn),
syft, and CycloneDX Generator (cdxgen). We choose to work with
the latest stable versions of these tools as of July 15, 2023. The
specific versions of each tool utilized are mentioned in the second
row of Table 1.
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GitHub
Find JavaScript
NPM Projects
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Projects

Find CyCloneDX 
SBOM Generators

4 CycloneDX 
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Ground Truth Comparison Performance 
Evaluation

Feature 
Overview

Note: The steps inside the gray region are repeated for every tool operated separately on each of the 50 projects.

Figure 1: Procedural steps in the methodology our study

Table 1: Overview of four SBOM generators

ORT cnn syft cdxgen
Version 841f770bfb 1.13.0 0.85.0 9.2.2
Identifies Components Yes Yes Yes Yes
and Versions
Details Dependencies No Yes No Yes
CycloneDx Format 1.4 1.4 1.4 1.5
Provides Checksum Yes No No Yes
Reproducibility Yes Yes Yes Yes

3.2 Selection of JavaScript Projects
In our study, finding suitable npm projects requires a systematic
approach based on specific file identifiers. The presence of a pack-
age.json file at the root of a project typically indicates npm usage.
However, this doesn’t exclude the potential use of other package
managers, such as Yarn or pnpm. The distinct package-lock.json file
serves as a clear indicator of npm usage. In contrast, the presence
of a yarn.lock file signals Yarn as the chosen package manager.

To optimize our search, we utilize the advanced search feature
of GitHub. We search for JavaScript repositories that contain a
package-lock.json file and exclude those with yarn.lock or pnpm-
lock.yaml files. To ensure the relevance and maturity of our chosen
repositories, we give preference to those with most star count, using
it as a metric for quality and community interest.

After applying our search criteria, we select the first 50 JavaScript
npm projects that fit our criteria to serve as the subjects of our
study. A comprehensive overview of these projects can be found
in Table 2. Each project is delineated by its name, star count (in
thousands), size (quantified in thousand lines of code, kLOC), and
the number of npm packages it incorporates. For instance, the
javascript-algorithms project boasts 174 thousand stars and
comprises 1783 kLOC, utilizing 11 npm packages.

The chosen projects offer a varied mix in both size and recogni-
tion. We have projects with substantial lines of code reflecting their
extensive frameworks, while others are more concise, representing
specialized tools. Such a diverse sample provides a comprehensive
representation, laying the foundation for drawing broader andmore
generalizable insights from our study.

3.3 Generation of SBOMs and Ground Truths
3.3.1 SBOM Generation Process. For each of the 50 selected npm
projects, we apply the four chosen SBOM tools. While the majority
of tools produce JSON formatted SBOMs, ORT outputs in XML. To

maintain a consistent data format for our subsequent analyses, we
employ a Python script to convert the XML output from ORT to
JSON.

3.3.2 Ground Truth Establishment. To accurately evaluate the effec-
tiveness of SBOM tools, a ground truth, a benchmark against which
tool outputs can be measured, is indispensable. We generate this
benchmark using the npm list command, which offers a comprehen-
sive tree of dependencies for each project. Employing the –depth
parameter with this command enables us to obtain a granular view
of dependencies, detailing which components are interdependent.
A custom Python script then processes this tree, extracting vital
details: component names, their versions, and interdependencies.

3.4 Comparative Analysis of SBOMs
3.4.1 Metrics and Evaluation Criteria. Our evaluation focuses on
three primary components: component names, versions, and de-
pendencies. The evaluation revolves around three key metrics:

• Accuracy: Represents the fraction of correctly identified
components to the total components. Given that there are
no true negatives (TN) in this evaluation, since SBOM tools
do not output what is absent, the formula reduces to:

Accuracy =
TP

TP + FP + FN (1)

Where:
– TP: True Positives - Correctly identified components.
– FP: False Positives - Incorrectly identified components.
– FN: False Negatives - Missed components.

• Precision: Assesses the fraction of correctly identified com-
ponents among all identified components.

Precision =
TP

TP + FP (2)

• Recall: Measures the fraction of correctly identified compo-
nents to all actual components in the ground truth.

Recall = TP
TP + FN (3)

Together, these metrics furnish a holistic picture of each tool’s
performance: accuracy gives a general overview, precision addresses
the trustworthiness of identified components, and recall gauges the
tool’s efficacy in pinpointing all pertinent components.

3.4.2 ComparativeMethodology. Weemploy a systematic approach
to evaluate the outputs of each SBOM tool against the ground truth.
The methodology unfolds as follows:
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Table 2: Details of the JavaScript projects

Project Name # of stars Size npm Project Name # of stars Size npm
(thousands) (kLOC) packages (thousands) (kLOC) packages

javascript-algorithms 174 1783 11 ws 20.2 509 9
bootstrap 165 1564 49 joi 20.1 1254 12
javascript 136 948 2 lowdb 19.9 1361 18
three.js 94 2018 20 p5.js 19.8 2084 48
Web-Dev-For-Beginners 75.1 782 1 hyperapp 19 53 2
express 61.7 630 48 vue-admin-template 18.8 2532 33
html5-boilerplate 55.2 1023 17 htmx 18.5 1555 10
Leaflet 38.2 1264 29 react-testing-library 18.1 2785 13
zx 38.2 3399 22 MagicMirror 18 2750 35
hexo 37.3 2096 37 mysql 17.9 249 9
phaser 35.1 2274 22 dotenv 17.6 2298 10
wtfjs 31.6 888 13 You-Dont-Need-Lodash-Underscore 17.3 418 6
tesseract.js 31.3 1300 35 statsd 17.2 979 7
standard 28.4 551 16 material 16.6 2517 67
webtorrent 28.2 2204 76 pouchdb 15.9 1755 69
layui 27.9 365 10 markdown-it 15.9 1144 40
JavaScript 27.5 758 10 jasmine 15.6 871 17
Modernizr 25.5 1432 33 eleventy 14.9 1175 53
eslint 23.3 2492 95 riot 14.8 2171 31
PhotoSwipe 23.1 1772 13 Luckysheet 14.5 2687 41
core-js 22.8 884 45 filepond 14 2136 21
mostly-adequate-guide 22.7 682 3 shelljs 13.9 724 17
highlight.js 21.9 1765 34 mithril.js 13.7 627 22
scrollreveal 21.7 1204 27 mathjs 13.5 2563 65
ava 20.5 3016 57 mui 13.4 1259 23

(1) Component Verification: We juxtapose the component
names and versions from the SBOM tools’ outputs with the
established ground truth, calculating accuracy, precision,
and recall.

(2) Dependency Verification: Our assessment of the tools’
proficiency in listing dependencies is twofold:

(a) Dependency Mapping:
• Using the generated SBOMs, we establish a dictionary
associating each component with its subsequent depen-
dencies.

• In parallel, the command npm list yields a hierarchized
dependency structure. We parse this to form a compara-
ble mapping that links each package (with its version)
to direct dependencies.

(b) Scoring Mechanism:
• By contrasting the identified dependencies from the
SBOMs with the ground truth, we allocate scores for
correct matches.

• In an ideal match, the score peaks at the total depen-
dency count presented in the SBOM dictionary.

• The ground truth score originates from the aggregate
dependency count tied to each package, derived from
the npm list output.

(3) Results Aggregation: The average scores for each param-
eter are calculated after findings from all 50 projects are

combined. This offers a comprehensive evaluation of each
tool’s performance.

Following our research, we discuss the implications of our find-
ings, highlighting the benefits and potential areas for improvement
for each SBOM tool related to JavaScript npm projects.

4 RESULTS
4.1 Comparison of Features
The overview of four SBOM generators - ORT, cnn, syft, and cdxgen
- are detailed in Table 1. Notably, all four generators exhibit the
capability to identify components and their respective versions. The
performance of these identifications is evaluated in Section 4.2.1 and
Section 4.2.2. A crucial aspect of SBOM generators is their ability
to provide a proper dependency list or tree, delineating the interre-
lationships between components and their versions. Both cnn and
cdxgen demonstrate this critical functionality, whereas ORT and
syft do not. The effectiveness of cnn and cdxgen in providing these
dependencies is assessed in Section 4.2.3.

ORT, cnn, and syft generate SBOMs in CycloneDX 1.4, while cdx-
gen produces them in CycloneDX 1.5. Additionally, checksums are
crucial for verifying component integrity. In this regard, ORT em-
ploys the SHA-1 algorithm, and cdxgen utilizes SHA-512, whereas
cnn and syft do not offer any checksum provision. To assess the
reproducibility of the SBOM generators, we generate SBOMs twice
for each of the 50 projects using all four generators, resulting in 400
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SBOMs. However, 36 instances result in either empty SBOM files or
no SBOMs generated at all. Consequently, we evaluate 364 SBOMs
and find that all four generators exhibit the capability to reproduce
the SBOM, except the serialNumber and timestamp, which are
expected to vary with each SBOM generated.

4.2 Performance Evaluation
In the evaluation of SBOM generators, three crucial aspects are
considered: identification of component names, detection of their
respective versions, and detailing of dependencies among them.
Each of these aspects are vital and need to be evaluated separately.
To facilitate a comprehensive comparison, three key metrics are
employed: accuracy, precision, and recall.

4.2.1 Evaluation of Component Name Identification. In this section,
the ability of SBOM generators to accurately identify component
names is assessed. Table 3 encapsulates the performance of each
tool over 50 projects. Table 3 reveals that cnn outperforms the
other tools, registering the highest average accuracy (96.29%) and
precision (99.97%), followed sequentially by cdxgen and syft. Con-
versely, ORT lags behind, exhibiting the lowest average accuracy
(74.06%), precision (74.75%), and recall (76.29%). While this table
provides a holistic overview, a more granular analysis is required
to understand the performance of each tool.

Table 3: Performance in identifying component names

Accuracy (%) Precision (%) Recall (%)
ORT 74.06 74.75 76.29
cnn 96.29 99.97 96.32
syft 80.49 80.78 85.68
cdxgen 83.30 83.91 97.49

Figure 2 depicts the distribution of the accuracy of the four
SBOM generators in identifying component names over selected 50
projects using box plots. Here, the median value is denoted as ‘Med’
for convenience. We notice that ORT achieves the highest median
accuracy (99.12%), while cdxgen has the lowest median accuracy
of 97.31%. The comparison of these medians with the average or
mean accuracies from Table 3, indicates the supremacy of medians
over means. This suggests left-skewed distributions of accuracy for
all four SBOM generators.

We can see from Figure 2, that the ORT tool has no outlier as
the range and Interquartile Range (IQR) covers the whole 0 to
100% area. This means that accuracies are spread all over the area,
highlighting the inconsistency in its performance. Moreover, ORT
gives 0% accuracy for 11 projects where it cannot produce SBOM
or gives empty SBOM. This contributes in ORT having the lowest
mean accuracy, even though it has the highest median value among
all the tools. On the contrary, cnn has seven outliers but the range
and IQR of it is much compact compared to other SBOM tools.
This very low spread specifies the consistency of cnn in finding
component names.

Another observation is that for the mostly-adequate-guide
project, both cnn and cdxgen score their lowest accuracy of 19.84%
and 7.87%, respectively. Whereas ORT and syft, each achieves ac-
curacy greater than 95% for the same project. This highlights a
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Figure 2: Distribution of accuracy in component detection

crucial point that for every project, at least one or more generators
consistently achieved accuracy exceeding 95%.

In terms of overall accuracy, cnn stands out as it has the highest
mean accuracy, the second highest median accuracy, and the lowest
spread. The performance of cnn in generating component name is
consistent, thus making it more reliable among the other generators.

The precision of the four SBOM generators when identifying
component names is displayed in Figure 3. Both cnn and ORT
display a median precision of 100%, whereas the median precision
value of cdxgen is lowest (97.96%). Here the mean precision (Table 3)
and median precision of cnn align closely, denoting resemblance to
symmetric distribution. But the median is much higher than mean
for other tools which indicates left-skewed distribution of precision
across the chosen 50 projects.

In case of cnn, the precision spread measured in terms of the IQR
and range is lowest among all four tools. This makes cnn the most
consistent tool in terms of precision, although it has 6 outliers. For
instance, the least precision for cnn is observed in the joi project
at 99.46%. Conversely, despite having a perfect median precision of
100%, ORT gives varying precision values across different projects.
This marks ORT as inconsistent in correctly giving component
name. Similarly, syft also exhibits inconsistency with 10 outliers
where six outliers have 0% precision.

The boxplots in Figure 4 illustrates the recall distribution of the
four SBOM generators. Interestingly, the medians of the four SBOM
generators are very close, spanning from 99.12% to 99.60%. The
higher medians compared to the mean recall values from Table 3,
infer left-skewness in recall measure. Moreover, the low spread of
all tools implies consistent recall performances in component name
identification. It is noticed that all the tools have outliers, with ORT
having the most at 12, and cdxgen with the fewest at four.

In terms of recall, although cdxgen reports the highest mean and
second highest median, it tends to identify more component names
than other tools. This increases the likelihood of matching given
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Figure 3: Distribution of precision in component detection

ORT cnn syft cdxgen

0

20

40

60

80

100

R
ec

al
l

#outliers: 12 #outliers: 7 #outliers: 7 #outliers: 4
Med: 99.30 Med: 99.12 Med: 99.60 Med: 99.49

Figure 4: Distribution of recall in component detection

names with actual names. But this also results in a higher number
of incorrect identifications, impacting its accuracy, precision as well
as recall.

For instance, in the bootstrap project, out of the actual 750 com-
ponent names, cdxgen identifies 758, whiles cnn identifies 745. Of
these, cdxgen correctly matches 746 names, one more than that of
cnn. Despite the higher recall of cdxgen, cnn demonstrates 100% pre-
cision providing a count closer to the actual number of component
names. It is worth noting that for the mostly-adequate-guide
project, even though cnn gives lowest accuracy and recall (both

19.84%), still achieves 100% precision by correctly identifying 74
names out of the 373 actual component names.

4.2.2 Evaluation of Version Identification. Table 4 outlines the per-
formance of four SBOM generators in identifying component ver-
sions. It is evident that cnn stands out with an accuracy rate of
84.28% and an impressive precision rate of 99.90%. But its recall
rate of 84.36% is slightly lower than cdxgen, which has the highest
recall rate at 92.57%. Comparatively, syft exhibits a balanced per-
formance with 80.44% accuracy, 80.48% precision, and 85.94% recall.
However, ORT lags behind the other tools in all three metrics. To
gain a deeper understanding of the performance of each tool, our
subsequent analysis employs box plots. These graphical represen-
tations reveal not only the central tendency but also the spread of
data, the variability and potential outliers.

Table 4: Performance in identifying component versions

Accuracy (%) Precision (%) Recall (%)
ORT 74.22 74.52 76.44
cnn 84.28 99.90 84.36
syft 80.44 80.48 85.94
cdxgen 80.58 83.68 92.57

Figure 5 provides a visual representation of the distribution of
accuracies for the four SBOM generators in identifying component
versions. The median accuracy of cnn is just 86.69%, whereas the
medians for the other generators are well above 97%. Since the
mean and median of cnn are relatively close, this results in a more
symmetrical box plot. Conversely, the medians of other tools are
significantly higher than the mean values listed in Table 4, leading
to left-skewed box plots.

ORT cnn syft cdxgen

0

20

40

60

80

100

Ac
cu

ra
cy

#outliers: 0 #outliers: 2 #outliers: 10 #outliers: 1
Med: 99.86 Med: 86.69 Med: 99.14 Med: 97.54

Figure 5: Distribution of accuracy for version identification

Although the IQR and range of syft is lowest among others, it
has the highest count of outliers at 10. Six of these outliers have
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0% accuracy which makes syft inconsistent. In contrast, the data
spread measured of cnn, by the IQR and range, is low. This ensures
consistent component version identification, although neither its
mean nor median exceeds 90

ORT gives the highest median accuracy of 99.86%, but the spread
is very high. Moreover, it manifests 0% accuracy for 11 projects
which causes the performance inconsistency. In spite of having a
high spread similar to ORT, cdxgen has only one outlier, for the
mostly-adequate-guide project where it achieves just 7.06%.

The precision of the four SBOM generators in identifying com-
ponent versions is depicted in Figure 6. Both cnn and ORT achieve
the perfect median score, while cdxgen gives the lowest median of
97.83%. Except for cnn, the median of other tools is significantly
higher than the mean values recorded in Table 4.

ORT cnn syft cdxgen

0

20

40

60

80

100

Pr
ec

is
io

n

#outliers: 0 #outliers: 7 #outliers: 10 #outliers: 4
Med: 100.00 Med: 100.00 Med: 99.28 Med: 97.83

Figure 6: Distribution of precision for version identification

Upon a closer inspection, we find that the IQR and range of
cnn have a tiny variation and has 7 outliers. However, the lowest
precision (98%) recorded by cnn is for the javascript project which
is a outlier. Furthermore, cnn achieves 100% precision in 43 out of
the 50 projects assessed.

ORT displays a vast spread in precision, ranging from 0% to
100%. This is why ORT shows no outliers despite having multiple
instances 0% precision. However, this suggests potential inconsis-
tencies in its performance. Similarly, the reliability of syft is also
compromised by the presence of 0% precision values. While cdxgen
has no 0% precision, the spread of precisions is high and it has four
outliers of lower precisions. Additionally, cdxgen has the tendency
of providing extra component names alongside their versions.

Figure 7 portrays the recall rates of the four SBOM generators.
The median recall of both ORT and syft achieve the highest rate
of 100%, while cnn has the lowest recall of 86.69%. As noticed in
case of precision in identifying component versions, similarly the
median recall of other tools is significantly higher than mean recall,
except for cnn.
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Figure 7: Distribution of recall for version identification

Syft, while having a narrow spread i.e. low IQR and range, it has
11 outliers. Among these 11 outliers, seven presents a recall value of
0%. The second placeholder ORT has the highest number of outliers
and 0% (11 times) recall. In contrast, cnn offers more consistent
performance, despite having lower mean and median recall with
just two outliers. However, cdxgen demostrates relatively stable
recall and has just one outlier. Both cdxgen and cnn identify the
mostly-adequate-guide project with the lowest recall of 15.38%.

4.2.3 Evaluation of Dependency Detection. The performance of cnn
and cdxgen in identifying component dependencies is summarized
in Table 5. ORT and syft do not offer dependency identification
features, hence they are excluded from this particular analysis.
cnn stands out with an average accuracy of 74.06%, a precision
rate of 90.22%, and a recall value of 79.46%. In contrast, cdxgen lags
behind considerably, with recorded average accuracy, precision, and
recall scores of just 29.62%, 40.94%, and 32.09%, respectively. These
results suggest that cnn outperforms cdxgen in the identification
of component dependencies.

Table 5: Performance in capturing component dependencies

Accuracy (%) Precision (%) Recall (%)
cnn 74.06 90.22 79.46
cdxgen 29.62 40.94 32.09

To gain amore comprehensive understanding, Figure 8 illustrates
the performance distribution using boxplots, representing accuracy,
precision, and recall metrics for cnn and cdxgen.

From Figure 8(a) and (c), it is observed that accuracy and re-
call appear to demonstrate similar patterns. cnn exhibits a median
accuracy of 76.94% and a recall rate of 82.08%, both of which is
significantly higher than cdxgen. The symmetry observed in the
box plots of cnn is due to the median accuracy and recall of it being
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Figure 8: Performance of SBOM generators in component dependency identification

quite similar to its mean (average) values listed in Table 5. On the
contrary, the accuracy and recall distribution of cdxgen is right
skewed, as the median is closer to the bottom of the box and the
whisker is shorter on the lower end of the box.

The spread, i.e., the IQR and range of cnn, is narrower than that
of cdxgen, reflecting its consistency in identifying component de-
pendencies. Notably, cnn displays only two outliers, identified in
the projects wtfjs and mostly-adequate-guide. Conversely, cdx-
gen does not have any outliers since its IQR and range extend from
0% to over 90%. However, cdxgen fails to report any dependencies
in seven instances, resulting in a 0% score.

In Figure 8(b), cnn demonstrates an impressive median precision
of 91.47%, while cdxgen exhibits a very low precision of 11.75%. This
suggests that the reported dependencies of cnn, though occasionally
fewer than the actual count, are represented with higher accuracy.
The spread of cnn is also very small, indicating consistent precision
across projects. cnn has six outliers, including the highest precision
of 100% in hyperapp project and the lowest precision of 44.57%
in the mostly-adequate-guide project. In contrast, cdxgen has
instances with 0% precision, implying instances where it fails to
generate any dependencies, a shortcoming not observed in cnn.

In summary, cnn consistently outperforms cdxgen in terms of
accuracy, precision, and recall for detecting component dependen-
cies. However, cnn has instances where it presents below-average
performance. This implies that while cnn is typically a more depend-
able option for dependency detection, there might be particular
scenarios or types of dependencies where it faces challenges.

5 THREATS TO VALIDITY
Our study, while providing comprehensive insights into SBOM gen-
eration for JavaScript npm projects, has its intrinsic limitations tied
to the methodology. In choosing SBOM tools, we prioritize those
generating CycloneDX formatted outputs, potentially excluding
other notable formats like SPDX. Additionally, we give preference

to tools that offer command-line functionality, which might leave
out proficient tools with different interfaces.

In terms of project selection, our approach prioritizes JavaScript
npm projects. While this offers a focused perspective, it might
not capture the essence of projects employing a mix of package
managers beyond npm. However, it is crucial to understand that
not all SBOM tools equip themselves to effectively capture every
nuance of each JavaScript package manager.

Despite these limitations, our research provides a comprehensive
picture of the effectiveness of SBOM tools within the context of
JavaScript npm projects, establishing itself as a valuable resource
for both academia and industry practitioners.

6 CONCLUSION
In this paper, we present the first known study comparing four
SBOM generation tools which are ORT, cnn, syft, and cdxgen. We
attempt to understand the unique features and overall abilities of
these tools. Our methodology systematically evaluates these four
SBOM generation tools by applying them to 50 popular open-source
JavaScript npm projects. We establish ground truths and conduct
comparative analyses using accuracy, precision, and recall metrics
in terms of component name, version, and dependency. Moreover,
the use of box plots enables granular analysis of the distribution,
spread, and potential outliers in the performance of these metrics.

Our study highlights the superior performance of cnn in effec-
tively identifying component names and versions. In contrast, even
while ORT and syft show their distinctive advantages, their omis-
sion of dependencies makes them less suitable for use in real-world
applications. This absence is especially crucial in the context of
SSC, where an understanding of the complex web of dependencies
is not only desirable but also essential, particularly when it comes
to identifying and addressing vulnerabilities.

Although cnn and cdxgen can both provide dependency infor-
mation, cdxgen’s unreliable performance, including fully failing
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to supply details at times, makes it questionable for critical appli-
cations. On this front, cnn appears as the only tool that can be
relied upon. Its consistent provision of component names, versions,
and dependencies underscores its potential as an invaluable tool in
SBOM generation, especially when precision is vital.

This pioneering research highlights the capabilities and limita-
tions of emerging SBOM generation tools for JavaScript ecosystems.
Our quantitative results and comparative methodology will help
developers in selecting and integrating SBOMs into projects. Our
findings also furnish valuable feedback for tool creators to enhance
automated SBOM generation from software packages.

In our future work, we intend to focus on the effectiveness of
SBOM generation tools in complex hybrid environments utilizing
many package managers. We can expand the assessment to addi-
tional programming languages, open-source projects, and SBOM
generation tools. Examining the intricate network of dependen-
cies can provide insights that lead to creating even more advanced
SBOM generating tools. Furthermore, integrating SBOM generation
into the fabric of continuous integration and deployment (CI/CD)
systems would enable dynamic SBOM analyses and adaptations.
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