MATH 4441/5541: Introduction to Numerical Analysis I

Instructor: Yunrong Zhu
Homework Assignment \#1

Due Thursday September 5, 2013

1. Read Section 1.1 and do the following problems:
(a) Show the equation $(x-2)^{2}-\ln x=0$ has at least one solution in the interval [1, 2].
(b) Find the absolute maximum and minimum of $f(x)=\left(1-e^{x}+2 x\right) / 3$ in the interval [1, 2].
(c) Suppose $f \in C[a, b]$ and $f^{\prime}(x)$ exists on (a, b). Show that if $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then there can exist at most one number p in $[a, b]$ with $f(p)=0$.
(d) Find the second Taylor polynomial $P_{2}(x)$ for the function $f(x)=e^{x} \cos x$ about $x_{0}=\pi / 6$. Give a bound for the error $\left|f(x)-P_{2}(x)\right|$ if we used $P_{2}(x)$ as an approximation to $f(x)$ on the interval $[0,1]$.
2. Read Section 2.1. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^{3}+x-4=0$ lying in the interval $[1,4]$. Find an approximation to the root with this degree of accuracy.
3. Read Section 2.3. Write MATLAB Programs for the Newton's method, Secant method and False Position method to find solution to the tolerance 10^{-5} for the equation $2 x+3 \cos x-e^{x}=0$ for $0 \leq x \leq 1$.
