MATH 4441/5541: Introduction to Numerical Analysis I

Instructor: Yunrong Zhu
Homework Assignment \#4

Due Thursday Oct. 24, 2013

1. Read Section 4.1, and do the following:
(a) Derive an $O\left(h^{4}\right)$ five point formula to approximate $f^{\prime}\left(x_{0}\right)$ that uses $f\left(x_{0}-h\right)$, $f\left(x_{0}\right), f\left(x_{0}+h\right), f\left(x_{0}+2 h\right)$, and $f\left(x_{0}+3 h\right)$. [Hint: Consider the expression $A f\left(x_{0}-h\right)+B f\left(x_{0}+h\right)+C f\left(x_{0}+2 h\right)+D f\left(x_{0}+3 h\right)$. Expand in fourth Taylor polynomials, and choose A, B, C, and D appropriately.]
(b) Find an error expression (at x_{0}) for the numerical differentiation formula

$$
f^{\prime}\left(x_{0}\right) \approx \frac{1}{2 h}\left[4 f\left(x_{0}+h\right)-3 f\left(x_{0}\right)-f\left(x_{0}+2 h\right)\right] .
$$

2. Verify that Simpson's rule is exact for all polynomials of degree ≤ 3 by verifying it holds exactly for $f(x)=1, x, x^{2}$, and x^{3}.
3. Construct Gaussisan-type quadrature formulas:
(a) $\int_{0}^{1} \frac{1}{\sqrt{x}} f(x) d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)$.
(b) $\int_{-1}^{1} f(x) d x \approx a f(-1)+b f(1)+c f^{\prime}(-1)+d f^{\prime}(1)$.
4. Mimic the following subroutine for the composite middle-point rule, and write MATLAB subroutines for the composite Trapezoidal rule and composite Simpson's rule. Use these three subroutines to compute the integral $\int_{0}^{1} \sqrt{x} \ln x d x=-\frac{4}{9}$.
```
function [ val ] = intcm( FUN, a, b, n )
%INTCM integral of the given function using the composite
% middle point rule
    [val] = intcm(FUN, a, b, n) find the integral of the given function
    FUN on the interval [a, b] using n subintervals.
    FUN must be a function handle.
    Example
        clear all
```

```
% a = 0;
    b = 1;
    f = @(x) sqrt(x);
    n = 100;
    [val] = intcm(f, a, b, n);
    Copyright (C) Yunrong Zhu, 2013.
h (b-a)/n; % step size
midx = a+h/2 : h: b; % middle points
val = 0;
for i=1:n
    val = val + feval(FUN, midx(i));
end
val = h*val;
%% Line 22-26 can be replaced by the following one line command,
% which is more efficient.
%val = h*sum(feval(FUN, midx));
end
```

(a) Test these two quadrature rules using different choice of h, compare with the exact solution $-\frac{4}{9}$. Plot the dependence of the error with respect the step size h.
(b) Is there any minimal step size h such that the error can not be reduced?
(c) Compare the results with the MATLAB subroutine: integral. Type help integral for the usage of this subroutine.

